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Welcome

The plan for today

* Dr. Keogh will speak what you can do with time series analytics (hint:
almost everything) for about 70 minutes.

e Coffee Break

* Dr. Brisk will speak about how to do this time series analytics in an
efficient and scalable way.



Format

* Dr. Keogh’s part of this tutorial has almost no math or code.
* We want to give you the intuition behind the SOTA time series data mining.

* While these ideas are general, here we will make them concrete, by mostly
considering a single running example (cows!).

* Important note: A few slides are a little too “dense”, these are designed to be
presented superficially today, and then read offline.



Our core claim

* What do you want to do with time series?

e Classification, clustering, summarization, visualization, segmentation, anomaly
discovery, repeated pattern discovery, rule discovery, emerging behavior
discovery etc.

* Amazingly, two simple related tools, the Distance Profile, and the Matrix Profile,
is basically all you need to do all the above!

* To analyze time series, there are two different situations, which have
almost no overlap:
* Behaviors are conserved in shape (first % of Keoghs talk)
* Behaviors are conserved in features (last % of Keoghs talk)



Bias Alert! We are the inventors of the Matrix Profile, so there is a danger this could be self
indulgent... However, the Matrix Profile has exploded in popularity in the last 3 years

observations of the magnetosphere collected by the Cassini spacecraft in orbit around Saturn.. ..in this case, the best-performing
method was the Matrix Profile.. Kiri L. Wagstaf et. al. NASA JPL.2020

(for an industrial IoT problem) Matrix Profiles perform well with almost no parameterisation needed. Anton et al ICDM 2018.
While there will never be a mathematical silver bullet, we have discovered that the Matrix Profile, a novel algorithm developed by the Keogh research group at UC-Riverside, is a powerful tool. Andrew Van
Benschoten, lead engineer at Target.

If anybody has ever asked you to analyze time series data and to look for new insights then (the Matrix Profile) is definitely the open source tool that you'll want to add to your arsenal Sean Law, Ameritrade.
(for) intrusion detection in industrial network traffic, distances as calculated with Matrix Profiles rises significantly during the attacks. ..as a result, time series-based anomaly detection methods are capable of
detecting deviations and anomalies. Schotten (2019).

The MatrixProfile technique is the state-of-the-art anomaly detection technique for continuous time series. Bart Goethals et. al. (ECML-PKDD 2019).
Based on the concept of Matrix Profile ..without relying on time series synchronization.. the Railway Technologies Laboratory of Virginia Tech has been developing an automated onboard data analysis for the
maintenance track system Ahmadian et. al. JRC2019
Matrix Profile is the state-of-the-art similarity-based outlier detection method. Christian Jensen et. al. IJCAI-19
we use the exact method based on the Matrix Profile (to assess the effectiveness of therapy) Funkner et al Procedia 2019.
Recently, a research group from UCR have proposed a powerful tool - the Matrix Profile (MP) as a primitive...(we use it for) fault detection Jing Zhang et al. ICPHM 2019
Inspecting both graphs one can see that the matrix-profile algorithm was able to identify regions where there is a change on the power level over the observed band. F Lobao 2019.
RAMP builds upon an existing time series data analysis technique called Matrix Profile to detect anomalous distances...collected from scientific workflows in an online manner. Herath et. al. IEEE Big Data 2019
Based on obtained results for the considered data set, matrix profiles turned out to be most suitable for the task of anomaly detection Lohfink et al. VISSEC2019
The computation speed and exactness of the Matrix Profile make it a powerful tool and (our) results back this. Barry & Crane AICS 2019
(examining) manufacturing batches considering raw amperage (we found that the) Matrix Profile highlights anomalies Hillion & O'Connell of TIBCO Data Science. re:Invent 2019. [
we use the exact method based on the matrix profile to search for motifs can be used to monitor the patient's condition, to assess the effectiveness of therapy or to assess the physician's actions. Funknera et al.
(The Matrix Profile is a) similarity join to measure the similarity between two given sequences. we opt for the median of the profile array as the representative distance (3D Dancing Move Synthesis from
Music)" Anh et al. IEEE Robotics and Automation Letters
We were amazed by the power of MP and seek to incorporate it into our framework Ye and Ageno.
..adopting the concept of (the) Matrix Profile, we conduct the first attempt to.. J. Zuo et. al. Big Data 20019
The accuracies obtained ...indicate that the Matrix Profile is useful for the task at hand instead of using the CNN features directly Dhruv Batheja
To speed up online bad PMU data detection a fast discovery strategy is introduced based on (the Matrix Profile) Zhu and Hill.
Specifically, ALDI uses the matrix profile method to quantify the similarities of daily subsequences in time series meter data, Zoltan Nagy, Energy & Buildings (2020)
Our two-fold approach first leverages the Matrix Profile technique for time series data mining.. Nichiforov 2020.
the class of matrix profile algorithms.. ..is a promising approach, as it allows simplified post-processing and analysis steps by examining the resulting matrix profile structureA. Raoofy et al.
We only require information about the time of several critical incidents to train our methods, as previously. To this end, we employ the Matrix Profle.. Bellas. et al.
a matrix-profile based algorithm applied across all trajectory data against a validation set revealed four significant motifs which we defined as motif A, B, C and D.. Fernandez Alvarez 2020.
The main building block of this (game analytics) algorithm is the matrix profile, Saadat and Sukthankar AAAI2020

We leverage the Matrix Profile (MP),... to create a micro-service-based machinery monitoring solution Naskos et al 2021
SLMAD uses statistical-learning and employs a robust box-plot algorithm and Matrix Profile (MP) to detect anomalies Team from Huawei/UCD.


https://www.researchgate.net/profile/Fabio_Santos_Lobao/publication/336316249_Intelligent_Radio_Spectrum_Monitoring/links/5d9bc29c299bf1c363ff051c/Intelligent-Radio-Spectrum-Monitoring.pdf

Comparing two time series

How similar are these two-time series?
C
\_jcz\—



Euclidean Distance Metric (ED)

Given two time series:
Q=q;..q,
C= Cl"'Cn C

D(Q,C)

We always z-normalize the data before computing the ED D(Q,C)
This is logically equivalent to Pearson’s Correlation



Euclidean Distance Metric (ED)

Z-normalization means we are ignoring mean
and standard deviation of the data.

At least 99.9% of the time, that is the right thing
to do.

So here D(Q,C) = D(Q2,C) = D(Q3,C) =D(Q4,C)
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Euclidean Distance Metric (ED)

Z-normalization means we are ignoring mean
and standard deviation of the data.

At least 99.9% of the time, that is the right thing Q
to do.

In Matlab
>> Q = zscore (Q);

Or
>> Q = (Q-mean(Q)) /std(Q);

D(Q,C) 0
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https://www.sciencedirect.com/science/article/pii/S2772375522001277

To be clear, X, Y and Z do not have any standard meaning for animal work. 02
. . . . . 021
Surge, Heave and Sway are the biological terms for acceleration directions. N "WMWWWW‘W‘~M~Wwwwwwwwwwww o Y
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(roll, pitch, yaw for rotation, are measures with a gyroscope). of A s X
0.1+
It is rare that X, Y and Z can be made to exactly map to Surge, Heave and Zz One Minute
Sway, because of the orientation of the sensors against the animal's body. |
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Alternatives to Accelerometers

Markerless tracking of animals has
recently become incredibly robust and
easy.

For this tutorial, | don’t care how you got
your time series.

http://www.mackenziemathislab.org/deeplabcut
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If possible, try to get labeled data. Try to get all labels, all
metadata at data collection
» Apollo vs. Dante It is very frustrating to find
« Apollo before operation vs. Apollo after operation interesting structure in the

data but have no way to “go
back in time” to discover its
cause.

» Apollo on pasture vs. Apollo on grain
» Apollo during winter vs. Apollo during summer
. etc.



1: grazing
2:
3: resting/other

m A - ”“7!*’4[41"""“wﬂ’”/ﬂw”’”Wfﬂfﬂﬁlﬁﬂﬂww L M’!M b+ 'WN W WMW W’W W Mﬁ W" it WWW I Wﬂ W W 1 M‘ Wﬂ Wy

1

‘ ‘ ‘ ‘ ‘ ' 218,880
1.21 Hours

As it happens, for this
dataset, we have wonderfully
detailed labels, a second-by-
second annotation of the
behavior.



1: grazing
2:
3: resting/other
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Lets zoom-in on 20 seconds of ruminating behavior
Call it Apol1oYSUB



| have this one-second-long behavior ]\\/ ,| am going to call is query.

| have reason to think that it is indicative of Bovine spongiform encephalopathy (BSE)

Does this query behavior exist in Apollo? To find out, we will build a distance profile.
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To find out, we will build a distance profile.

This is simply the z-normalized Euclidean distance

between the query and every subsequence in the
longer time series...
D(Q,C)
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To find out, we will build a distance profile.

This is simply the z-normalized Euclidean distance

between the query and every subsequence in the
longer time series...
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To find out, we will build a distance profile.

query

v

ApolloYSUB

10 —

>> dist profile = real (MASS V2 (ApolloYSUB, query)):;

>> plot(dist profile)

I

distance profile
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To find out, we will build a distance profile.

>> dist profile = real (MASS V2 (ApolloYSUB, query)):;

>> plot(dist profile)

Best match
M "

query
ApolloYSUB
\ \ \ ‘ \ \ \
0 200 400 ‘ 600 800 1000
10 —
5l
distance profile
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0 100 200 300 400 500 600 700 800 900 1000
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In general, the absolute numbers have
no real meaning. If you wanted more
interpretable numbers, you could
convert to Pearson's correlation
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Lets do a full worked example

L concrete | | carpet | Lconcrete |

2000 4000 6000 8000 10000 12000

| have this dataset, measuring the motion of a dog walking in my lab, first on concrete, then
carpet, then concrete...



Query
Lets do a full worked example

0 10 20 30 40 50 60 70 80 90 100

L concrete | | carpet | Lconcrete |

2000 4000 6000 8000 10000 12000

| have this dataset, measuring the motion of a dog walking in my lab, first on concrete, then
carpet, then concrete...

| also have a query, for the same dog walking, on a different day.

Do you think the query is from when the dog was walking on carpet or concrete or
something else...



The best match, shown in context Query

7450 7500 7550 7600
\ \ | A \ \ \
2000 4000 6000 8000 10000 12000
‘ ‘ ‘ distance profile
PP Y OO 1 o g A e mw i e T w Ty
concrete | | carpet | Lconcrete |
2000 4000 6000 8000 10000 12000

This task is trivial with MASS code...

>> dist = MASS(dog ,carpet query ); % compute a distance profile
>> [val loc] = min(dist); N % find location of match

>> disp(['The best matching subsequence starts at ',num2str(loc)])

The best matching subsequence starts at 7479



The best match, shown in context Query

7450 7500 7550 7600

L
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Below we plot the 16 best matches.
Note that they all occur during the
carpet walking period. This entire
process takes about 1/10,000t" of a
second.

Note that this example is moving
beyond nearest neighbor search,
and is really performing semantic
segmentation into regimes..
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OK, we have seen a one-dimensional query is easy, but suppose | have multi dimensional time series?

Easy! The key insight is that the z-normalized time series is effectively unitless, so we can do each dimension individually,
and just add them, to make a multi-dimensional distance profile.

Let's do a quick worked example...



Multidimensional Nearest Neighbor (distance profile) AP \ Pressure “ A AP
vl - ) \l\/lagx“"‘
0 - —— 250,000

| have 262,144 data points that record a penguin’s orientation (MagX) and the water/air pressure as he hunts for fish.
Question: Does he ever change his bearing leftwards as he reaches the apex of his dive?



~, MagX| N
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Multidimensional Nearest Neighbor (distance profile) *3 A A p Pressure
0 “‘ N M ow vl v N

| have 262,144 data points that record a penguin’s orientation (MagX) and the water/air pressure as he hunts for fish.
Question: Does he ever change his bearing leftwards as he reaches the apex of his dive.

This is easy to describe as a multidimensional search. The apex of a dive is just an approximately parabolic shape. | can
create this with query pressure = zscore ([[-500:500].~21*-1)"; it looks like this

| can create bearing leftwards with a straight rising line, like this query Magx = zscore ([[-500:50011)"; It looks like this ~



Multidimensional Nearest Neighbor (distance profile)

We have seen above how to search for a 1D pattern. For this 2D case, all we have
to do is add the two distance profiles together, before we find the minimum value.
Note that the best match location in 2D is different to either of the 1D queries.

load penguintest.mat

figure;, hold on;

query pressure = zscore([[-500:500].72]*-1)";

dist_p = MASS V2 (penguintest(:,1),query pressure);

query MagX = zscore([[-500:500]]

)i

dist m = MASS V2 (penguintest(:,2),query MagX);

[val,loc] = min([dist m + dist p]); %
plot (zscore (penguintest (loc:loc+length (query MagX),2)), 'color',[0.85 0.32 0.09]

(
plot (zscore(query MagX), 'm')
(

What are the periodic

bumps? They are

wingstokes as the bird

“flies” underwater

find best match location in 2D

plot (zscore (penguintest (loc:loc+length(query pressure),1)),’b’)

plot (zscore(query pressure), 'g'")
title(['Best matching sequence,

pressure/MagX,

is at ', num2str(loc)])
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Mini-Review: The distance profile

* This is a simple idea called: query-by-content/similarity-search/nearest-neighbor search etc.
* You can use the distance profile to find the K-nearest neighbors to any query.

e Thisis an incredibly powerful and useful tool, limited only by your imagination.

* Itis by far, the most important subroutine in all of time series data mining.

e Suppose you have multidimensional data? You can just compute the individual distance
profiles, sum them, then find the lowest values as the multidimensional nearest neighbor!
(penguin example)

* The computation of the distance profile is incredibly fast.

* We can search the query in 24 hours of our bovine data (4,320,000 datapoints), in well
under a second.

* This amazing speed is due to Mueen®* (my former PhD student). His algorithm is called
MASS*

* You can get MASS in most computer languages/platforms.

*https://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html



Preview: The Matrix Profile

* We are about to learn about the Matrix Profile*

* The Matrix Profile is the best idea in time series data mining
in the last decade ;-)

* Itis a stunningly simply idea.

* Our claim is that once you have the Matrix Profile, almost
all time series problems are trivial.

* Longer tutorials are online

*https://www.cs.ucr.edu/~eamonn/MatrixProfile.html



* Let us return to our small bovine example.

* Let us pick a random subsequence of length one second, | happened to pick location 215

* Let us find its nearest-neighbor distance (excluding itself) to anywhere else in the time series.
* (we could use the distance profile to do that)

* The distance was 6.1

ApolloYSUB
\ | \ \ \ \
0 200 ‘ 400 600 800 1000
******************************************************************** ® 6.1
5 —
o —
100 200 i 300 400 500 600 700 800 900 1000

215



* Let do that again

* Let us pick a random subsequence of length one second, | happened to pick location 547

* Let us find its nearest-neighbor distance (excluding itself)
* (we could use the distance profile to do that)

* The distance was 2.2

ApolloYSUB
\ | | | | |
0 200 ‘ 400 600 800 1000
******************************************************************** ® 6.1
5 —
————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— @ 2.2
O | —
100 200 i 300 400 500 600 700 800 900 1000

547



* Let us do this for every location!

* The resulting curve is called the Matrix Profile

ApolloYSUB

0 200 400 600 800 1000

Matrix Profile

100 200 300 400 500 600 700 800 900 1000



e There are some parts of the Matrix Profile that have special names

* The highest location is called the Time Series Discord

\
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e There are some parts of the Matrix Profile that have special names

* The lowest locations (there will always be a tie) is called the Time Series Motif pair

ApolloYSUB A
\ \ \ \ \ Y \
0 200 400 600 800 1000
] “—Time Series Discord
Matrix Profile
“—— Time Series Motifs —
(U 1 1 1

100 200

300

400

500 600 700 800

900 1000



Reading a Matrix Profile

Where you see relatively low values, you know that the subsequence in the original time
series must have (at least one) relatively similar subsequence elsewhere in the data (such

regions are “motifs” or reoccurring patterns)

2000 2500 3000

500 | 1000 1500

Must be conserved shapes (motifs) in the original data,
in these three regions, we call these Time Series Motifs



Reading the Matrix Profile

Where you see relatively high values, you know that the subsequence in the original time
series must be unigue in its shape (such areas are “discords” or anomalies).

Must be an anomaly in the original
’ data, in this region.

We call these Time Series Discords

500 1000 1500 2000 2500 3000



Zebra Finch

(Zebra Finch Vocalizations in MFCC, 100 day old male)
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Can you see any conserved behavior here?



Zebra Finch
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Motif discovery can often surprise you.

While it is clear that this time series is not random, we did
not expect the motifs to be so well conserved or repeated
so many times. There is evidence of a vocabulary, and
maybe even a grammar...
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Taxi Example: Part |
P s =N
=T
Below is the hourly average of the number of NYC taxi passengers over 75 days in Fall of 2014. %

Lets compute the Matrix Profile for it, we choose a subsequence length corresponding to two days.... (next
slide)

At ’W/\;‘“}[ﬂi*f\r‘\‘\r ’\/\f\r’\;’\%’\[}? W\r H et

[a] http://futuredata.stanford.edu/ASAP/extended.pdf



Taxi Example: Part Il

* The highest value corresponds to Thanksgiving

* We find a secondary peak around Nov 6", what could it be? Daylight Saving Time! The clock going
backwards one hour, gives an apparent doubling of taxi load.

* We find a tertiary peak around Oct 13t, what could it be? Columbus Day!
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A quick example of the
amazing utility of motif
discovery (next 6 slides)

Australian Fur Seal (Arctocephalus pusillus)
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This is an interesting dataset; can we find motifs in it?
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We can find many interesting motifs in this
data.

Suppose we label them A, B, C, D etc.

We can then ask the question, is there any A B C
patterns in the occurrence of these motifs?

In fact, there is, when we see D, we almost [\‘/\/\

always see C within a few seconds...

o

200 400 0 200 400 600

If D Then C



What does this mean?

\ Don't’ care region: zero seconds

W «<— Don't’ care region: four seconds

A
[ \

Thirty - six seconds



Foraging at uniform
speed, then a...

T
B— .
e
\ Don’t’ care region: zero seconds
W A(/‘ Don’t’ care region: four seconds

lf \

Thirty  -six seconds



...dramatic acceleration to
catch a fish by the tail...

Foraging at uniform
speed, then a...

B— .
e
\ Don’t’ care region: zero seconds
W A(/‘ Don’t’ care region: four seconds

lf \

Thirty  -six seconds



Foraging at uniform
speed, then a...

...dramatic acceleration to ...coast to ...to flip fish for head -
catch a fish by the tail... surface... first swallowing

B— .
e
\ Don’t’ care region: zero seconds
W A(/‘ Don’t’ care region: four seconds

lf \

Thirty  -six seconds



This idea is very general

Find motifs, label them A, B, C, D, E etc.

Now you can ask lots of interesting questions...

 We see about 10 B’s per hour in males, but only 1 or 2 B’s per hour in
females, why?

* If I give my cow flax instead of corn feed, does it change the
frequencies of any of the motifs?

*  Which motifs (if any) are associated with my more aggressive bulls?

* Are any of the motifs dependent on the outside temperature?

* It seems like motif D is much more common in good milkers. So, let

me change these two things under my control, to see if it increases
the frequency of the D motif.




1: grazing
2:
3: resting/other
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218,880

! 1.21 Hours

Let us return to Apollo

Let's compute the Matrix Profile for this dataset

To do so, we have to compute the Euclidean Distance between the approximately 24 billion
possible pairwise combinations of subsequences.

Because of an amazing algorithm called SCRIMP++, we can do this in seconds!

There are other algorithms: STAMP, STAMPI, STOMP, SWAMP, DAMP, SCAMP, GPU-STOMP,
TranSCRIMP, TranSCAMP and TranSCAMPfpga...



1: grazing
2:
3: resting/other
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1.21 Hours

Here is the best motif.
Note that both occurrences happen during

They are 1.29 units apart
This suggest that we may have found a decision rule

If you see a subsequence (X)such that
D(X, VW) < (3 * 1.29 )

Then Print (‘Bovine 1is ")

Here 3 is a magic constant that could be tuned, to change precision/recall
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2:
3: resting/other
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Distance profile

This might be a coincidence, but | see
evidence of a meta-pattern here.
There appears to be three “bursts” of
fidelity to the template pattern.



Mini Review |

* What | have shown you is amazing if you think about it.

* Knowing nothing about bovine behavior...

* Using less than eight lines of code in total.

e Using one minute of brain power, and a few seconds of CPU power.
* | built a tool to correctly annotate complex behavior in a bovine.



Mini Review |

* Was this a fluke?

* Let quickly do it again!
* This time with chickens.

* This time | have four years of chicken data! -
* (many different chickens in parallel, over months) &qa




Mini Review I

* Here is the template that motif discovery found w«v“\/\/\/\/\/\/

* It was associated with Dustbathing
* | used it to search a 12,679,054,727 datapoint (four full

years) archive of chicken behavior for the one thousand

best matches. i.e. the 1,000 nearest neighbors

e _— N\, AMNANNS
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To w
rpzmatch_— AN\ AN AN S

Top 4 matc

All Top 100




Mini Review I

* Here is the template that motif discovery found v-w“\/\/\/\/\/\/

* It was associated with Dustbathing
* | used it to search a 12,679,054,727 datapoint (four full

years) archive of chicken behavior for the one thousand

best matches. i.e. the 1,000 nearest neighbors

* |t gets better.

* My data is annotated with two types
of chicken has-mites|no-mites.

* | can see that Dustbathing is more
common in the has-mites class,
so have learned that chickens with
mites will dustbath more.

TeW\A/\/V\/V

i AVA'AVA
To /pg/r@yn,\/JW\/\/
rpzmatch_— AN\ AN AN S

Top 4 matc

All Top 1000 matches
e o J/AN




A Strong Claim

* The Matrix Profile is the SOTA Time Series Anomaly Detector.

* This is a surprising claim, as there are about 100 papers a year published on
this topic (including lots of deep learning methods)

* The Matrix Profile is simpler (one parameter) faster (by orders of magnitude)
and on most bake-offs works much better.

* Lets see a quick example..



Dataset: Consumer electrical demand in Portugal
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Systems (e-Energy '22).



Dataset: Consumer electrical demand in Portugal
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The Highly Desirable Properties of the Matrix Profile |

e [t is exact: For motif discovery, discord discovery, time series joins etc., the Matrix Profile
based methods provide no false positives or false dismissals.

e |tis simple and parameter-free: In contrast, the more general algorithms in this space
that typically require building and tuning spatial access methods and/or hash functions.

e |tis space efficient: Matrix Profile construction algorithms requires an inconsequential
space overhead, just linear in the time series length with a small constant factor, allowing
massive datasets to be processed in main memory (for most data mining, disk is death).

e |t allows anytime algorithms: While exact MP algorithms are extremely scalable, for
extremely large datasets we can compute the Matrix Profile in an anytime fashion, allowing
ultra-fast approximate solutions and real-time data interaction.

e |[tis incrementally maintainable: Having computed the Matrix Profile for a dataset,
we can incrementally update it very efficiently. In many domains this means we can effectively
maintain exact joins/motifs/discords on streaming data forever.



The Highly Desirable Properties of the Matrix Profile Il

e |t can leverage hardware: Matrix Profile construction is embarrassingly parallelizable,
both on multicore processors, GPUs, distributed systems etc.

e |tis free of the curse of dimensionality: That is to say, It has time complexity that is
constant in subsequence length: This is a very unusual and desirable property; virtually all
existing algorithms in the time series scale poorly as the subsequence length grows.

e |t can be constructed in deterministic time: Almost all algorithms for time series
data mining can take radically different times to finish on two (even slightly) different datasets.
In contrast, given only the length of the time series, we can precisely predict in advance how
long it will take to compute the Matrix Profile.

e |t can handle missing data: Even in the presence of missing data, we can provide
answers which are guaranteed to have no false negatives.

e Finally, and subjectively: Simplicity and Intuitiveness: Seeing the world through
the MP lens often invites/suggests simple and elegant solutions.



Mini Review Il

» With just the Distance Profile and the Matrix Profile, you can solve many (most/all)
problems in time series data analysis.

* Once installed on your machine, these are both one line of code!

* There is a large and growing community of Matrix Profile users, so these tools exist in
most languages/platforms.

The Matrix Profile generalizes to multiple time series (i.e. joins) so you can ask questions
that compare and contrast behaviors:

* What patterns occur in Males but not Females
* What patterns occur in Hereford and Holstein
* What patterns occur before Denuding but not after Denuding

The Matrix Profile generalizes to other useful primitives, Chains, Novelets, Shapelets,
Platos, Snippets, FLOSS....



Switching Gears a Little
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3: resting/other
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Bad news ;-(
Sometimes there are behaviors that are not captured well in shape.

Think of human behaviors: walking/running/swimming/cycling all have characteristic shapes.
But there is no shape for reading/watchingTV/resting/sleeping etc.

Instead, we have to consider features.



Instead of pulling out subsequence shapes, lets pull out subsequences, and measure features...

We can then use the many algorithms that ingest feature vectors, nearest neighbor, decision trees, naive Bayes,...

subsequence,
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Minimum
Maximum
feature Entropy

Zero crossing rate
Skewness
Fractal dimension

vector,




1. Fulcher B.D, Little M.A,, Jones N.S . Highly comparative time-
series analysis: the empirical structure of time series and their

This begs the question, which features to use? methods. J. Roy. Soc. Interface 10, 20130048 (2013)
2. Lubba C, Sethi S, Knaute P, Schultz S, Fulcher B, Jones NS
(2019) catch22: CAnonical Time-series CHaracteristics. Data

There are more than 9,000 suggested features for Min Knowl Disc 35(6):1821-1852

time series! [1]

Many of these features are redundant with each

other, or just useless... subsequencei
Jones and Fulcher searched through all these
features to find a small subset that:
* Are mostly non-redundant TASANLS " S P N
* Provide discrimination between semantically different ; - o o =
classes in most real-world domains \ b
The small set is called Catch-22 [2] —
Minimum
| think Catch-22 is one of the best ideas in time : EAaXim“m
series data mining in the last decade.. eature ntropy _
tor Zero crossing rate
vec [ Skewness
Fractal dimension




1. Fulcher B.D, Little M.A,, Jones N.S . Highly comparative time-
series analysis: the empirical structure of time series and their

Unfortunately, the names of the Catch-22 methods. J. Roy. Soc. Interface 10, 20130048 (2013)
. . 2. Lubba C, Sethi S, Knal}te P,.SchultZ. S, Fulcher B, ].ones NS
features are poor, with no real mnemonic (2019) catch22: CAnonical Time-series CHaracteristics. Data
Min Knowl Disc 33(6):1821-1852

value.

subsequence,

S AL LAY |

Feature Names
DN_Outlierinclude_n_001_mdrmd
DN _Outlierinclude p 001 _mdrmd
DN _HistogramMode 5
DN_HistogramMode_10
SC_FluctAnal 2 dfa 50 1 2 logi prop rl
SB_TransitionMatrix_3ac_sumdiagcov
FC LocalSimple _meanl tauresrat
SB_MotifThree_quantile_hh

featu re ) CO_HistogramAMI_even_2_5

CO_Embed2 Dist_tau_d_expfit_meandiff

Ve CtO r. SB_BinaryStats diff longstretchO

| MD_hrv_classic_pnn40
SB_BinaryStats_mean_longstretchl
FC_LocalSimple_mean3_stderr

SP_Summaries_welch_rect _area 5 1
SP_Summaries_welch_rect_centroid




Lets see how this works.

Lets take a time series subsequence from Class A

Class A

0 300



Feature Names

Lets see how this works.

DN_Outlierinclude_n_001_mdrmd

DN_Outlierinclude_p_001_mdrmd

DN_HistogramMode_5

Lets take a time series subsequence from Class A

DN_HistogramMode_10

SC_FluctAnal_2_dfa_50_1_2_logi_prop_rl

SB_TransitionMatrix_3ac_sumdiagcov

FC_LocalSimple_mean1_tauresrat

Lets measure its 22 features, and summarize them

Nl o] vl ] w] o~

SB_MotifThree_quantile_hh

with a color-coded bar chart... 5

CO_HistogramAMI_even_2_5

10

CO_Embed2_Dist_tau_d_expfit_meandiff

11

SB_BinaryStats_diff_longstretchO

12

MD_hrv_classic_pnn40

13

SB_BinaryStats_mean_longstretchl

14

FC_LocalSimple_mean3_stderr

15

SP_Summaries_welch_rect_area_5_1

16

SP_Summaries_welch_rect_centroid

17

CO_flecac

18

19

CO_FirstMin_ac

IN_AutoMutuallnfoStats_40_gaussian_fmmi

PD_PeriodicityWang_th0_01

||I| [ -
HLE S TR B A
I 22

Class A

o
0

2

0 300

SC_FluctAnal_2_rsrangefit_50_1_logi_prop_rl

CO_trev_1_num




This is now a proxy for Class A

We will use this for classification,
clustering, anomaly detection etc.

ol
Class A 0 Ir ey e g™

2

0 300



Now let us compare the feature vector to two
unknown instances, ‘1’ and ‘2’

Which one is also in Class A?

Unknown 1
Ill,I I.I I. lll I_l
2
Class A . IIII I.' LA -
2
Unknown 2 I .II III —m II. Il-

0 300



Which one is also in Class A?

It is of course, Unknown 2

Unknown 1 ’\, . I I . I.
’ Il 1 -I [ Il -

Ll
Class A 0 II|I lI Al ™
2

Unknown 2 I n III bl -

0 300



Which one is also in Class A?

It is of course Unknown 2

Unknown 1 -~ I\f

Class A

Unknown 2

0 300

Ll
. Ill .l 1 lll -
2

An important note

In this example the class happens to be
preserved in both shape and feature.

More generally, there are time series that
are conserved only in features.

Think of human behaviors:

Conserved in shape:
walking/running/swimming/cycling

Conserved in feature:
reading/watchingTV/resting/sleeping



Once you have your feature vectors, you can
(among many other things) do the analogue of
Distance Profile and Matrix Profile.

Lets see a quick example:
We have a mouse walking on a circular treadmill..

Let's build a catch-22 Matrix Profile. The high
values should be when there are anomalies in the
data...

500 — . . .
| Y-Axis location of right paw (excerpt)

200 —




This works, beautifully

Tail is
mistaken Occlusion of
paw by tail

>00 % Y-Axis location of right paw (excerpt)
200

A B C B C D

40-seconds | -



This works, beautifully

>00 % Y-Axis location of right paw (excerpt)
200

A B C B C D

40-seconds

-\,

..back to
normal gait.

Lriding” ﬁ

the roller..

Normal Lriding” @ 4
gait, then.. the roller..




summary

* For data that has conserved shape, the Distance Profile and the Matrix
Profile will solve 90 to 100% of your task at hand.

* For data that has conserved features, using catch-22 with an appropriate

algorithm will get you a long way. You can do a little better sometimes:

* Reducing the 22 features to an even smaller subset
* Augmenting the features with one or two custom features.

* We only looked at univariate data, but you normally have many dimensions,

say X, Y, Z ,roll, pitch, yaw, temperature, pressure..
* The Distance Profile and the Matrix Profile trivially generalize to multidimensions.
* However, in most cases, you can solve your problem using only one dimension.
e Using catch22 with multidimensional data is possible, but less well understood.
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The dataset is an hour of EOG (eye movement) data of a sleeping patient, sampled at 100

[ ?
Are there any repeatEd patterns In-my data: Hz. It looks very noisy, it is not obvious that there is any repeated structure...
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0 350,000

Let us run the Matrix Profile, looking for four-second long motifs...

>> load eog sample.mat
>> [matrixProfile profileIndex, motifIndex, discordIndex] = interactiveMatrixProfileVer3 website (eog sample, 400);

The code takes a while to fully converge, but in just a few seconds, we see some stunningly well conserved motifs...

Having found the motifs, we can ask, what are
they? A quick glance at a paper by Noureddin
et. al. locates a very similar pattern (with
some time warping) called eye-blink-

artifact.
Figure 1.(f) of 1
Noureddun et al \ Motif2 /||
/\M)W’W V\\ /«JMW Motif 1 Motif 2

200 r 1 r 1
Four seconds Four seconds

\ A
g‘ _‘ﬁ‘J
| /
| ,J\ 1\; /
|
! kl, "‘ Note that there may be more examples of each motif. We should take one
l 1
I
2 6 8 10

Amplitude (uV)
o

-100(- of the above, and use MASS to find the top 100 neighbors... See Have we
ever seen a pattern that looks just like this?. \We can also adjust the range
parameter r inside the motif extraction code.

1

4

-200

Time (s)



What are the three most unusual days in this three-month long dataset? P

e e e

1 1 1

|
0 500 1000 1500 2000 2500 3000 3500
The datasets is Taxi demand, in New York City, in the last three months of the year.

We choose 100 datapoints, which is about two days long (the exact values do not matter much here).

>> load taxi 3 months.txt

>> [matrixProfile, profileIndex, motifIndex, discordIndex] = interactiveMatrixProfileVer3 website(taxi 3 months ,100);

The code pops up the matrix profile tool, and one second later, we are done! The three most unusual days
correspond to the three highest values of the matrix profile (i.e. the discords), but what are they?
*  The highest value corresponds to Thanksgiving

We find a secondary peak around Nov 6th, what could it be? Daylight Saving Time! The clock going backwards one hour,
gives an apparent doubling of taxi load.

*  Wefind a tertiary peak around Oct 13th, what could it be? Columbus Day!

1
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Is there any pattern that is common to these two time series? MWyt st s masiaem o i 1
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0 0.5 1 1.5

Lets assume that the common pattern is 3 seconds, or 300 datapoints long.
Let us concatenate the two time series, and smooth them

Now let us find the top motif, but insist that one motif comes before 24289, and one after...

2 2.5
16

>> load('Queen vs Ice.mat’)

>> whos
Name Size Bytes Class Attributes
mfcc queen 1x24289 194312 double
mfcc vanilla ice 1x23095 184760 double

>> interactiveMatrixProfileAB (smooth ([mfcc queen , mfcc vanilla ice]), 300, 24289); % This will spawn this plot ->

The top join motif shows a highly conserved pattern.

It is the famous bass line from Under Pressure by Queen
\
which was plagiarized by Vanilla Ice.

\ The top join motif
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Find the most conserved pattern that happens at least once every two days in this dataset } ‘ | l

0 40000 80000 120000 160000

The question is a little underspecified, as the length for the conserved patterns was not given. Let us try two hours, which is about
800 data points.

The full 20,000 datapoints represents about 14 days of electrical demand data for a house in the U.K. Thus we first need to divide it
into approximate 2 day chunks.

>> load TwoWeekElectrical
>> seven two day chunks = divide data(T);

Now we just need to call the consensus motif code.

>> consensus_motifs = consensusMotifs(seven two day chunks,800); % 800 is the length of subsequence

The code returns the seven time series below. Note that the basic (probable) hair dryer —_
pattern is highly conserved, given how noisy the data is.

The similarity between the items can be better seen if we cluster the (probable) electric kettle i
time series with a single linkage dendrogram.
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The dataset is 3 years of Italian power

If you had to summarize this long time series with just two shorter examples, what would they be? demand data which represents the hourly

electrical power demand of a small Italian city
for 3 years beginning on Jan 1t 1995.

Jan/1/1995

We just need to call Time Series Snippets algorithm...

>> load('ItalianPowerDemand.mat’)
>> [fraction,snippet, snippetidx]= snippetfinder (data(:,4),2,200,30);

It will pop open three windows, which are snippet 1, snippet 2 and the regime bar.

May/31/1998

We searched for the top-2 snippets of length 200. This was our quick “eyeballing” guess as to the length of a
week, but it is actually about 8.3 days. Note that the snippets are not align to start at the same day of the
week (this is a trivial constraint to add if desired).

What makes the snippets different? (tentative answer)
In the winter, people go home after work (and turn on

Sunday Sunday O heaters/appliances). In the summer, people do more
\ \ leisure activities after work and don’t return home until
it is cooler. -
A D

Snippet 1 8 days 8 days

We obtain the “regime bar,” which tells us which snippet “explains” which region of data. As it
happens, Snippets seem to represent summer and winter regimes respectively.

T AR 1 AR

Jan/1/1995 May/31/1998
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Lets us load the data, and concatenate it to itself, after flipping left to right.
We can then search for a join motif, that spans 5046, the length of the original time series.
If we find a good join motif, it means that the conserved pattern is time reversed!

>> load('mfcc.mat’)
>> length(mfccl(1l,:))
ans = 5046

>> interactiveMatrixProfileAB(([mfccl(1l,:)'; flipud(mfccl(l,:)"')]), 150, 5046); % This will spawn this plot ->

The top join motif shows a highly conserved pattern.
Why would a pattern occur time reversed?

“The most extraordinary of all canonic movements from this
time is of course from Symphony No. 47. Here Haydn writes out
only one reprise of a two-reprise form, and the performer must
play the music ‘backward’ the second time around”.

The data is the 15t MFCC of this piece of music. 1 150

The top join motif

—T
~ 1 150




When does the regime change in this time series? WMMJ W\WWWWWNM MMM{W\MM/\M{\MN MWWﬁWWWM

_ Arterial Blood Pressure _ Healthy Pig.. ... internal bleeding induced
0 15000

In this dataset, at time stamp 7,500, bleeding was induced in an otherwise healthy pig. This changes the pig’s APB measurement, but
only very slightly. Could we find the location of the change, if we were not told it? Moreover, can we do this with no domain knowledge?
In other words, can we detect regime changes in time series?

>> TS = load('PigInternalBleedingDatasetArtPressureFluidFilled 100 7501.txt"');

>> CAC = RunSegmentation (TS, SL); %SL is the length of subsequence

>> plot (CAC, 'c’)

>> [~, loc] = min(CAC) %value of loc is 7460 which is the approximation of exact value 7500

Here, we choose SL to be 100, approximately the length of one period of arterial pressure (or the period of whatever repeated patterns you have
in your data), however, up to half or twice that value would work just as well. The output curve, the CAC, minimizes at just the right place.

How does it do it? In brief, if we examine the pointers in the Matrix Profile Index, we will find that very few will cross over the location of a regime
change (most healthy beats have a nearest neighbor that is another healthy beat, most “bleeding” beats have a nearest neighbor that is another
“bleeding” beat), it is this lack of pointers that cross over the regime change that is what the CAC is measuring.

CAC
0.5
< The minimum value of the CAC suggests the location of the regime change
0 0 l | 15:00
MMM A AMAMAMAAMAAAMAAAAAAMAMAMMAY
40 0 5000 | 10000 15?00



Are there any patterns that repeat in my data, but at two distinct lengths?

O T R s T Ny Cerwiyerve( ‘ T ““r‘ YT [ ;\‘ (Y “;:’ I\ “\"\;;"‘gf N \alalasiisalder

See also “Is there any pattern that is common to these two time series?”’

We can solve this with a quick and dirty trick. The code interactiveMatrixProfileAB (T, m, crossover) searches time
series T for a motif of length m, such that one of the motif pair occurs before crossover and one occurs after crossover.
We can take a time series and append it to a rescaled copy itself, setting the to the length of the original time series. Now when we
find motifs, we are finding one at the original scale, and one at the rescaled size.

In this case, | want to know if any of my insect behaviors happens at length 5,000 and at 10,000, so | type...

>> load insectvolts.mat % load some insect epg data
>> interactiveMatrixProfileAB([insectvolts ; insectvolts(l:2:end)], 5000, length(insectvolts)); % search the appended data

No need to let it converge, after a few seconds we have our answer...

i Two motifs in the rescaled space Two motifs in the original, true space
Note you can do this for non
integer rescaling. Matlab will warn
you, but it is defined and allowed. This behavior took 20 seconds

Note that the bottom motif is

discovered in spite of having a lot This behavior took 40 seconds
of noise in one of the occurrences.

Note that the dimensionality of P R '”j B
the motifs is 5,000! This would k/hy//
have been unthinkable before the

Matrix Profile.

A btk
a— o

_~—" This behavior took 20 seconds

W

This behavior took 40 seconds




see also “How do I quickly search this
long dataset for this pattern, if an
approximate search is acceptable?”

How can | optimize similarity search in a long time series?

Suppose you want to find a query inside a long time series, say of length 67,000,000.

First trick: MASS (and several other FFT and DWT ideas) have their best case when the data length is a power of two, so pad the data to make it a power of
two (padding with zeros works fine).

Second trick: MASS V3 is a piecewise version of MASS that performs better when the size of the pieces are well aligned with the hardware. You need to

tune a single parameter, but the parameter can only be a power of two, so you can search over say 21%to 220, Once you find a good value, you can
hardcode it for your machine.

rng ('default') t seed for reproducibility

data= cumsum(randn(1l,67000000)); % make data
query= cumsum(randn(1,2713)); % make a long query
e If you run this code, it will output...
dist MASS V2 (data ,query );
[val,loc] = min(dist); % find best match location
hold on Best matching sequence is at 32463217
plot (zscore(data (loc:loc+length (query))))
plot (zscore (query), 'r') Elapsed time is 14.30 seconds.
disp(['Best matching sequence is at ', num2str(loc)])
toc After padding: Best matching sequence is at 32463217
figure Elapsed timeis 12.31 seconds. ) e
data = [data zeros(l,2”nextpow2 (67000000) -67000000)]; % pad data to ] f”%ﬁ
tic % next pow of 2 MASS V3 & padding: Best matching sequence is at 32463217 g M
dist = MASS_V2(data ,query ); } "\W
[val,loc] = min(dist); % find best match location Elapsed time is 5.82 seconds. :'}{\)‘i
ho1d. on e o
plot (zscore (data(loc:loc+length (query)))) .
plot (zscore (query), 'r') Note that it outputs the exact same
disp(['After padding: Best matching sequence is at ', num2str(loc)]) . . .
toc answer, regardless of the optimizations,
figure but it is fast, then faster, then super fast. : ,‘
tic ] AL
dist = MASS V3 (data ,query, 2716 ); ) M
[val,loc] = min(dist); % find best match location * NMN‘.
hold on ~JXM

plot (zscore(data (loc:loc+length (query))))

plot (zscore (query), 'r")

disp(['MASS V3 & padding: Best matching sequence is at ', num2str (loc)])
toc



What is the right length for motifs in this dataset? See also Are there any repeated patterns in my data?

This is a very interesting question, which more than most, deserves a long explanation. However, to be brief and pragmatic. Let us revisit the
EOG dataset. Recall that we choose 4 seconds as the motif length, which | happen to know (from reading papers on the topic) is a good choice.

>> load eog sample.mat
>> [MP profilelIndex, motifIndex, discordIndex] = interactiveMatrixProfileVer3 website(eog sample, 400);

Let us look at the Matrix Profile, and the top motif we find (bottom left). The results seem to make sense.
However, suppose in contrast that we knew nothing about the domain, and had chosen a motif length that was much too long, say length 3,000
(bottom right). How could we know that we had picked a length that was too long? There are two clues:

* Obviously, the motifs themselves will be less well conserved visually.

* The Matrix Profile itself offers useful clues. It tells us how “specially well conserved” the motif is (min (MP) ) relative to the average subsequence (
mean (MP) ). As the ratio of these two numbers is approaches zero, it suggests a stunningly well conserved motif in the midst of others unconserved
data. However, as the ratio of these two numbers is approaches one, it suggest that the “motif” is no better conserved than we would expect by random
chance. In practice, we rarely compute these ratios, as is visually obvious that the MP looks “flat”.

60 >> min (MP) /mean (MP) ans = 0.290 >> min (MP) /mean (MP) ans = 0.756 60

40

Here the MP looks “flat”

20

, conserved visually.. conserved visually..
/ |

) y
400 1 3000

\
M The motifs are well The motif are not well
.



I need to find motifs faster! Part |

Part of the solution might be to use GPUs, see [a][b].

Moreover, it is important to understand, we almost never need to compute the Matrix Profile to completion, the anytime
SCRIMP++ converges so fast, that in general we just run it 1% (or less) of convergence.

Nevertheless, sometimes you might want to compute the converged Matrix Profile. There is a faster algorithm for this. It exploits
some of the ideas in [b], and it exploits the fact that it does not need to waste the overhead needed to make anytime updates,

to achieve about an order of magnitude speedup.

For consistency with our other tools, when the fast code finish, it pops open the same plot.

1:35:700000), 300);, toc

ever3 website(insectvolts(

i : il . toc
dex] = interactlveMatrlerof . lts(1135‘700000)' 200, 300); -«
i [Mp MPIndex, mIndex, dinde Index, dIndex] = mpx (insectve
>> T1C, : dex, mIndeX,
1apsed time is 61.44 seconds . s> tic, [MP M?In6 2; econds:
BEeR Elapsed time R e

4 Figure & UCR Interactive Matrix Profile Calculation 3.0 (Completed) - o X 4 Figure & UCR Interactive Matrix Profile Calculation 2.1 - o X

file Edit View |nset Jools Deskto indow  Help > File Edit View Insert Jooks Desktop Window Help
SCRIMP 100.0% done: The input time senes: The best-so-far motifs are color coded The input time series: The motifs are color coded (see bottom panel)
—d——-—-—qm?lnﬂ'l.vr'Y';‘ wrhuwm-vm'rwlr' Y ‘ﬁ R L L L e T v LR R *

0.0001 2 0.0001 2
The best-so-far matrix profile The best-so-far matrix profile

28]’ T N N WA Y NV A b AL 28# e R e N AN N NN AN T At AL

¢ 001!:!‘6 best-so-far 1st motifs are located at 17169 (green) and 17910 |°.2 2 m%%‘e best motif pair is located at 17169 (green) and 17910 (cyan) 7 ‘D‘Z
1 300 1 300
The best-so-far 2nd motifs are located at 11071 (green) and 16449 The 2nd best motif pair is located at 11071 (green) and 16449 (cyan)
‘I"f_bi“;“ﬂf:"f;f ;'ﬁ:‘i‘;ﬂﬂ%@:ﬂﬂi‘"_m e e w:!gwm (e 19122 cyn) To make this compatible with 2016 MATLAB, we replace the

Discard

1 300 built-in “maxk” with a third party version called “maxk1”
The top three discords 70(blue). 466(red), 1202(green) 1nu top three discords 12084(blue), 10380(red), 8853(green) 0 p y .
Wbhall) koo liniod s e e Ve e (by Salam Ismaeel). If you have later versions of MATLAB, you
! %0 1 %00 may wish to undo this change.




Have we ever seen a pattern that looks just like this, but possibly at a different length?

ISR o1 AT e aan dning ryhmﬂ QLRsIUArat AR s eyl f",*

In our insect data, a basic feeding primitive looks like this: 7, we can model it with something like: [1:600].70.2

We have a theory that a certain higher level behavior will result in “A long primitive, followed by a shorter and smaller primitive,
followed by another long primitive”, like this.. ~~ |y~ , we can model it with: [[[1:600].70.2] [[1:300].70.2] [[1:600].70.2]]

However, we don’t know how long the whole pattern could be...

The function to the right can solve this problem. It simply
brute forces a MASS test for all lengths within a range
(here 100 to 300%) at a given step size (here 5%).

There may be faster techniques, but MASS is so fast, they
may not be worth bothering with.

A critical trick is to normalize the comparisons at
different lengths (see Appendix).

o)

>> load insectvolts.mat % load some insect epg data

>> query = ([[[1:600].70.2] [[1:300].70.2] [[1:600].70.2]11);

>> uniform scaling search (smooth (insectvolts,10), query);
<— Match at original length does not
look very similar. However, at 285%
the match is very good. /

1 4000

< laoke like a Iot of code bt mact of it ic for nlotting
> 100KS lIKe a 10T OT CO oS | ) £

function [] = uniform_scaling_search(TAG, QUERY)
figure;

subplot(4,1,1);

plot (TAG, 'g')

title(['This is the time series, of length

subplot(4,1,2);

hold ':.;

title([ QUERY, f length ',num2str(length(QUI

fcrx—lO 3300 Plot
plot (QUERY (1:100/i:end), 'color', [0.5 0.5 0.5])

end

plot (QUERY, 'LineWidth',2, 'color’, 'r');

subplot (4,1,4);

hold on;

best_match_val = inf;

for i = 100:5:300 Loop over all scalings
NewQUERY = (QUERY(1:100/i:end));
distprofile = MASS_V3(TAG, NewQUERY, 1024);
[val,loc) = min(distprofile);

', num2str (length(TAG))]);

ERY)), ', rescaled versions in gray']):

val = val * 1/sqrt(i); This normalizaiton step is critical see Appendix

if val < best_match_val Record the best scaling

best_match_val = val;
best_match_loc = loc;
best_match_scale = i;
end
end

plat(zscore(ouERY( IDO/best _match_scale: end)) neWidth',2, "',':',':');

set (gca, '.~.Z.. (1 erqtk(QUERY IGO/bes\: 'nar_ch sc ale end)b])

title(['The best match is found when we rescale to ',num2str(best_match_scale),

subplot(4,1,3);
hold on;

distprofile = MASS_V3(TAG, QUERY, 1024);

[val,loc] = nln(dlstprcz le]

plot(zscore (QUERY), neWi '+2,'color', ':')
plo:(zscare("A"(lo"'loc+ erg:b(ousﬁy) 1)),

set (gca, 'X1i (1 enqth{OUER‘{[ :100/best_: 'l\at.ch scale:end))]);
title(([' is is e , at riginal 1 1)

end

)i
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Are there any evolving patterns in this dataset (time series chains) 2 \% sreathing |
</ g /
S// \m
—:E “‘ J“ ‘”‘“V “* “‘U ‘ J “UA k“‘k “: “\ ,“,“ “‘\ ,“ “\ , “k ) ‘ ‘L/ ‘ \,“-- (\“:;\,“;““';‘r\" \‘J‘/“‘“ \‘;“ 7\3““‘,“‘(‘\‘ d‘r ‘k 3‘7“‘“‘”\‘:“" \J“ /.“( ““‘ ,“r \ "\\ \“ ‘L 4 “L “‘ \ " ‘\ [/ \ U AR OV VAR (PR VAR UV AR U WV L \
000 g 2000 4000 6000 8000 10000 12000 14000 16000

This is a dataset of respiration from a sleep study. Each breath appears to be about 360 data points long. So lets search for time series
chains of length 360...

>> load respiration.mat
>> TSC1l demo (respiration , 360);

The algorithm finds the highlighted chains below.

1000
507 M A My NN NN N 1 | n | f AR VANYINYA e e e A A A e N A a T a T a T A T A T A T U A T A T A T A D T A e e
o\ L L L LY JU\ ‘ﬁ n_ =Y} (TR N I 1 A O A S I S I Y B A Y A R A N A R R O B Y R N AU R AN AU AU AU AUV AVVARYAWYA
[ W R W Y | 5 Y V A VY B N B Y A G A W LA W M\ R U A U 2 U0 U U I VD A VA O (Y (Y O NV A W WV A W A UV SV R P VoV A CN T e V
. \ . \ \ . \ \ \
00T 2000 4000 6000 8000 10000 12000 14000 16000

Let us zoom in on the chains, to better see what is going on...

SV VA WVAR W ARV L W L WY

Note the increasing “gulp” artifact that happens between cycles. Also note that it begins to happen earlier and earlier in
the cycle. What does this mean?

Here is the (lightly edited) annotation of Dr. Gregory Mason (LA BioMed/UCLA) an expert on cardiopulmonary interactions.
“The gulps are attempts to inspire against an obstruction coming the back of the tongue. The large signals are from the machine which do
not necessarily reach the patient, the small gulps are pathologic attempts to breathe. Why does it increase? With each successive breath
the patient tries harder to inspire. It finally is 'synchronized' and you don't see the small patient signal, and this event cycles over and

over. The cycling is best seen without treatment if one looks up "crescendo snoring," a hallmark of obstructive sleep apnea.”



Welcome

* Congrats! About 90% of the best minds in data science are implicitly or
explicitly working on the problem of getting people to click on ads! You
are doing something more interesting and noble.

* If you like this tutorial, you may enjoy my others ;-)
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Streaming Time Series
Analysis for FPGAs
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Streaming Time Series

Current window of recently sampled datapoints

Next datapoint Old (discarded)
to sample datapoints

o -0 - 00— 0-0

|

Compute occurs here



Offline vs. Streaming

e Offline
* Entire time series is available in memory or on disk
* Example: Read time series from disk
Compute Matrix Profile or catch-22 features
Write Matrix Profile or catch-22 features to disk
* Streaming

* Time series length is unknown (treat as infinite)
* Datapoints stream from a sensor or across a network
* Computed result for the current window may be consumed immediately



Streaming with your CPU (or GPU)

NIC

4 N ) 4 N )
CPU W CPU W CPU W CPU W
. BAEYAN v ) V) YV

L1 L1 L1 L1

L2 L2
L3
( Main Memory
RDMA L




Streaming with your CPU (or GPU)

NIC

4 N\ [
CPU '@ CPU
. BAEYAN

\

L1
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CPU W CPU W
\_ BAEYAN YV
L1 L1
L2

L3

SEEER

RDMA

Main Memory




Streaming Time Series: Sensor

Old (discarded)
Streaming Application datapoints

0 - o —o0-0

FPGA




Streaming Time Series: Network

Current window of recently sampled datapoints

_— Old (discarded)
Packet Streaming Application datapoints

O <« N RN N RN
Extract

Datapoint




Offline = Streaming

* Many time series algorithms are originally developed and evaluated

in an offline context and development goes no further than a paper
published at KDD, ICDM, etc.

* Very little work on how to convert an algorithm from offline to
streaming and how to quantify or evaluate algorithmic differences.



Simple Example: Similarity

Objective Measure: 25
e How “similar” are the 7
shapes of Q and C? ? Q
1.5+
1
0.5+
0

0 20 40 60 80 100 120 140



le Example: Similarity

Objective Measure:

* How “similar” are the
shapes of Q and C?

Euclidean Distance:
« ED = /3, (q; — ¢;)?




Simple Example

Objective Measure:

* How “similar” are the
shapes of Q and C?

Euclidean Distance:

: Similarity

Unnormalized

[

{

« ED = /3™ (q; — ¢;)?

Normalization needed!

™ Ao pr

Normalized



/-Normalization

* Many offline algorithms start by Z-normalizing a time series

ti—U tr—p th—H
T — (tl, t2’ ---,tn> TNOT'm — < ! ) 2 ) wun . >

o o o

1 Y, (ti—p)?
=Xt 0=\/ ;

n-—1



/-Normalization

* Many offline algorithms start by Z-normalizing a time series

. _ [ta—u iU tn—u
T = <t11 t21 ey tn) TNorm — < o o ' o >
U = ;Zi=1 L 0 = \/ n—1 This sum assumes that the

whole time series is available



Online Z-Normalization

Current window of recently sampled datapoints

Next datapoint
to sample

— @

|

Z-Normalize within the window



Streaming Sum and Streaming Mean

Current window of recently sampled datapoints

Next datapoint
to sample

tW+1

tw

— @

tW—l

4




Streaming Z-Normalizer

Current window of recently sampled datapoints

twt1 tw

iy

Zoym = Zsum T twer — 41

u=p+

iey (i — w)?

|

w-—1



Streaming Z-Normalizer

Current window of recently sampled datapoints

tw+1 Ly t;
e 6 - ©
tw+1 — U tw — U t,—u
o o o
i Chad i
1=2 l

2:sum = z:sum + tw+1 - tl

w—1



/-Normalization: Offline vs. Streaming

* Many offline time series algorithms begin by Z-normalizing the entire
time series
* This cannot work in a streaming context!

* If applied in an offline context, there may be numerical differences
between results obtained from offline vs. streaming Z-normalization

* Understanding and bounding these differences is key to effectively converting
an offline algorithm to streaming, prior to FPGA implementation

* This phenomena is not exclusively limited to Z-Normalization



The Matrix Profile

* Need to compare every length-m
subsequence in the time series

<~
w

* This means we need the whole
time series before we can
compute the Matrix Profile

* Is there a streaming solution?

Key:

Small distances are blue I:
Large distances are red

Dark stripe is excluded




The Matrix Profile: Correlation

c, C, C

n-m+1

¢, Ci1 Ci2 C 1 n-m+1

¢, Cri Cy> C 2 n-m+1
Cn-m+1 C n-m+1,1 c n-m+1,2 C n-m+1,n-m+1

y v v v

P max(C,) max(C,) max(C, . .,)




The Matrix Profile: Correlation

Matrix Cimaz
Profile

XX

C’maﬁ? coo max
1 n—m-1

T, -subsequence of length m



The Matrix Profile: Streaming

- NOw

Correlation Matrix




The Matrix Profile: Streaming

- Now

Original Correlation Matrix
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The Matrix Profile: Streaming
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Original Correlation Matrix
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The Matrix Profile: Streaming

- NOW

Original Correlation Matrix
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The Matrix Profile: Streaming

- NOW

How can we fix this?

Original Correlation Matrix

New Comparisons

New Comparisons

Even More Comparisons
Even More Comparisons

Even More Comparisons

Even More Comparisons

Even More Comparisons

Even More Comparisons
Updated MP




The Matrix Profile:
Problems with the Existing Method

* This method computes the EXACT Matrix Profile values; however...

* There are three significant downsides:
* |t is too slow for any meaningful analysis on long or fast streams
* |t depends on the availability of the previous data
* The runtime grows with the number of observed sequences.



Representative Matrix Profile

* Key Assumption: From a stream S we have prior-observed data R that
is representative of future observations.

Incoming Data Stream (S) Now
Representative :
Dataset (R) |
I
f’z J Find Nearest Neighbor of J :

= subsequences of Sin R
k3
—
==

Representative Matrix Profile (RMP) of S

 This results in a good approximation of the Exact (Oracle) MP.



Representative MP Example

- NOw

Comparisons to

Representative Dataset

Representative Matrix
Profile



Representative MP Example

- NOW

Comparisons to

Representative Dataset

Representative Matrix Profile



Representative MP Example

- NOW

Comparisons to

New
Comparisons

Representative Dataset

New
Comparisons

Representative Matrix Profile



Representative MP Example

- NOW

Comparisons to STILL O(|R]) per new subsequence!

Representative Dataset

Representative Matrix Profile



Learned Approximate Matrix Profile (LAMP)

Obijectives Incoming Data Stream (S) \ Now
* Be fast enough to '_wm WM‘WMM l WMVWJJ" wmwi

operate in real-time ",

* Be able to operate with
power/memory/disk
constraints. ) \

¥ b

v :

* Be dataset agnostic

Learned Matrix Profile (LAMP) of S



Approximate the Matrix Profile...

W: Extraction Window
M: Subsequence Length

A single input to LAMP model S: Extraction Stride
S
R T
: N |
I e
i ALY
:‘___!___lExtractJ >
M Subsequences

W



... Using a Convolutional Neural Network

Conv. Layers
8x1x96
5x1x192

Conv. Layer
3x1x192

Conv. Layers Conv. Layer
8x1x192 3x1x192
5x1x192 2

Conv. Layers
8x1x96
5x1x96

Conv. Layer
3x1x96

Add RelLU Global Fully Sigmoid
Layer Average  Connected
Pool

Conv. Layer Conv. Layer Conv. Layer
1x1x96 1x1x192 1x1x192



Assessment: Seismic Dataset

g«.o'
T * ' Earthquake Data
- - A e e e e *: b e

Exact MP

Neural Network LAMP




Edge-Scale

Deployment: AMD/Xilinx Zyng

Off-Chip Memory

Processing System (PS)

|

CPU MemoryController

I

Bus

I

Il

Instruction

Scheduler

Fetcher

[ Data Mover

)

[
[
[

Dispatcher

Decoder ] [ On-Chip BRAM ]

[ BRAM Reader/Writer ]

Jsjj05u0)
Jayng diyo-uo

|

Computing

Engine

PE PE

Conv
Engine

MISC
Engine

Programmable Logic (PL)




Cloud Deployment: AMD/Xilinx Alveo U280

High-Throughput DPU

Convolution Engine

Compute Engine

Computing Engine Interface

Activation/Weights/Bias Banks

PR —

Load/Store Unit

Local Memory Pool

Batch Engine

[ DPU2

[ DPU1
DPUO

~

-
e

Control Register Bank
” S
Engine

Shared Weight Controller

Scheduler

Instruction Fetch

AXI Read/Write Master




Cloud Deployment: AMD/Xilinx Alveo U280

Low-Latency DPU

(

AXI Read/Write Master




CNN Partitioning

3 ‘\‘ /,’ // > E ’///,
'\ 7 -7 ‘ LY -7 _ \
Conv. Layers  Conv. Layer \| - g 7 ” Conv. Layers Conv. Layer \\3: 7 ) : \‘\\\
8x1x96 3x1%x96 o7 8x1x192 3x1x192 __, S N
5x1x96 e 5x1x192 T ~ D
RelLU ,’/:’:,’/ VA4 l /7 RelLU ”,::,/ / "_:::::,,
- Vi, Zalll W v/ R -
In i Add RelU ‘ \\‘\\:‘\\\ "‘ Add RelLU Global Fully Sigmoid
., Layer , Tl -, Layer A\;aralge Connected
00l
Conv. Layer Conv. Layer Conv. Layer
1x1x96 1x1x192 1x1x192

\ \

| |

DPU Custom HLS Kernel

* Note: When the work was done, the DPU did not support Global Average
Pool or Sigmoid Layers. Newer DPUs support Global Average Pool.



/yng Implementation

[ )
s_axi_ HPCO «
. S
lilJ s_axi_HP0 <
S s_axi_HP1<
g w
< S
N S
s_axi_HP2 <
s_axi_HP3«
N

<» AXI Interface

Alveo U280

Implementation

Host Server

DPU Kernel
»—<> m axi instr Conv
- = BatchNorm
»—<p> m_axi_data_0 ReLU
Add
—<p m_axi_data_ 1 :
s ™
>— GAP
—<
’ ( L\ 0 >E -g
| =0
|3 © 8 5 o |
 |2|m * 5 S
x. (&) ©
| 'C'l
§ Sigmoid '(;U
©
- I
NE E/

Custom Kernel

Application

Acceleration API|

Run Time Libraries

Drivers

HBM Controller

Alveo Device
SLR 2
o)
DPU Kernel 2 (5x Batch Engine)
7 x AXI masters for HBM
connection
—
] SLR1
A
DPU Kernel 1 (5x Batch Engine)
7 x AXI masters for HBM
= connection
.2 ~
PCle | §’ L
BE- SLRO
- 'alinm|
@ DPU Kernel 0 (4x Batch Engine)
6 x AXI masters for HBM
connection
]
— D)
5|2
ol g Custom Kernel
2|2 2 x AXI master for HBM connection|
E = J
HIE H HBM AXI [20:21]
AXI Switch Network )
— )

i

i

Ca— ()Y ) .HBMAXI [0:6]

HBM Stack 1 (4GB)

HBM Stack 2 (4GB)




Global Average Pool (GAP) Kernel

Input: Array of feature maps D € RM>*N (N: # of channels)

Output: N-dimensional vector g € R" consisting of the average value
of each feature map.



Fully-Connected Layer

Input: Feature vector g € RY

Output: Feature vector z € RM

Tiling Scheme
nr
z—qW +b BB
ne m n,
|Illl| | @ / @ LT 1
. ) N .
Weight Matrix: W € RV*M 0 %
B|as Vector b E [RM Vector Weights Matrix Results BRAM

Note: Bias vector initialized in BRAM



Fully Connected Layer: Architecture

GAP

Weights
BRAM

! N+ .

Ny
ﬁ

© [l

Vv e n n
wm - wm B\ G T :

|
V'
0

Lo Lo | oo
_
Itiply- lat
multiply acIumu ate Vector Weights Matrix Results BRAM
Bias
~—— BRAM
nr

| |

| Add |
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Sigmoid Layer

1
1+e™*
* Challenges: Exponentiation and Reciprocal (Division) are expensive

* Logistic Sigmoid Function:  f(x) =

 Solution: HW-friendly approximations



Sigmoid Approximations

f&x) =

ultra_fast_sigmoid (Theano library)
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Sigmoid Approximations and their Error
(8-bit Fixed-point)

—— sigmoid
—— ultra_fast_sigmoid
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HLS Optimizations
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Model Training Flow
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Results: Edge Prototype

DPU + ARM : DPU + HLS Kernel
I
DPU + Arm DPU + Arm DPU + Arm DPU + Arm DPU + Arm DPU + Arm : DPU + IP DPU + IP
(B512) (B800) (B1024) (B1152) (B1600) (B2304) | (ultra_fast) (fastexp_512)

Logic Usage 39K (56%) 42K (59%) 46K (65%) 44K (62%) 49K (70%) 52K (75%) | 57K (82%) 60K (86%)
Register Usage 50K (36%) 57K (40%) 65K (46%) 64K (45%) 77K (54%) 87K (62%) | 95K (67%) 100K (71%)
DSP Usage 78 (21%) 117 (32%) 154 (42%) 164 (45%) 232 (64%) 289 (79%) : 290 (80%) 326 (90%)
On-chip RAM Usage 77 (35%) 95 (44%) 109 (50%) 127 (58%) 131 (60%) 171(79%) | 174 (81%) 174 (81%)
Throughput (GOPS) 70.4 107.0 154.2 167.6 220.2 367.1 1 453.5 428.3
Peak Throughput (GOPS) 153 240 307 345 480 691 ' 691 691

~—

Larger/Faster DPU Variants



Results: Edge vs. TPU / Raspberry Pi

Edge Raspberry DPU+ DPU+IP DPU+IP

TPU Pi3 Arm  ultra_fast fastexp_512
Inf. Rate (Hz) 824 2.6K 12.1K 15.0K 14.2K
Energy () 161.4 58.8 7.2 6.7 9.1

GOPs/Watt 5.8 10.4 107.9 146.1 135.8




Results: Cloud Prototype

§ DPU2
: o
| | [ﬁ
[ DPU1 [W] Scheduler
I [ Do ] [ ] I Activation/Weights/Bias Banks
I Scheduler / Regmap (CSR) Code FIFO I
I { Fusion Engine E’wy‘ylgsif\:e } { Load Save } I La:::‘e:‘w Podl L |
I Convolution Engine I ghe | M LJ
1 1 Hﬂ
I AXI Read@l& Master I AXI Read/Write M
I I cadWrte Maser
GPU Server Desktop I LL + CPU LL +IP LL +1P I HT + CPU HT +IP HT +IP
CPU CPU ! (ultra_fast) (fastexp_512) ! (ultra_fast) (fastexp_512)
Throughput (TOPS) 92.52 69.57 491 ; 2.26 3.04 2.53 ; 4.27 5.53 4.83
Latency (ms) 356 227 296 1 5.68 3.25 3.49 | 6.29 3.85 4.09
Inference Rate (KHz) 3,079 2,298 163 | 75 101 84 ! 142 184 160
Energy (J) 118.32 72.20 38.43 : 9.15 6.81 8.20 : 4.86 3.75 4.29
GOPs/Watt 1,210 740 68 I 44 57 46 I 77 98 89

LL = Alveo Low-latency, HT = Alveo High-throughput.



Results: Inference Accuracy

Time Series Dataset FA-LAMP Inference Accuracy
N Train/Test | 32-bit edge: edge: qa_edge: | qa_edge: | qa_cloud: | qa_cloud:
e Split float | ultra_fast | fastexp | ultra_fast | fastexp | ultra_fast | fastexp
Earthquake 120M/30M | 97.4% 91.4% 92.5% 93.8% 94.7% 94.3% 95.1%
Insect EPG 2.5M/5M 97.2% 90.8% 93.2% 91.9% 94.4% 92.5% 94.8%
Chicken Accel. | 6M/2M 95.8% 86.9% 91.1% 89.5% 93.1% 90.2% 93.7%

ga = quantization-aware Training, edge = Ultra96, Cloud = Alveo.

Future Work:

Can we train sigmoid approximations, rather than inserting them after training with the exact sigmoid?




Ethernet Integration (Cloud/Alveo U280
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Throughput as a Function of Payload Size
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Recap

* FPGAs are highly amenable to streaming applications

» Offline time series algorithms often need significant modifications to
work in a streaming context

* Using a neural network to predict the output of an offline algorithm is
one of many possible approaches to convert offline to streaming

* Simpler approaches may make smaller-scale modifications, such as replacing
offline normalization with streaming normalization

* Think about context: is a given streaming application better deployed
in the cloud or in the edge?




Future Directions

e Can the catch-22 features be computed in a streaming fashion?

* What can be done with streaming catch-22 features once they are
computed?
e This tutorial: combine with the Matrix Profile

* Immediate Thought: does it make sense to predict the catch-22 featuresin a
manner similar to LAMP?
* Future Work: Real-time machine learning using catch-22?
* What type of machine learning models? (Neural nets? Something else?)
e Can we detect concept drift in streaming data from catch-22 observations?

* When concept drift occurs can we incrementally retrain our model(s) to compensate?




Numerical Precision Challenges

* Most papers on time series (offline or online) assume 32-bit floats or
64-bit doubles

* If you use a neural network you can train with other formats (e.g.,
bfloat) and quantize down to fixed-point

* Many numerical stability problems exist for very large time series
(e.g., billions of datapoints) for both online and offline algorithms
* e.g., see Rakthanmanon et al., KDD 2012 for online normalization

* Many downstream implications for online algorithms that process an online-
normalized time series



Approximate Arithmetic Opportunities

» Benefits: smaller, faster, more energy-efficient than exact arithmetic
operators

* Challenges: arithmetic operators will be incorrect for some input bit
combinations

* Key questions:
* Does approximate arithmetic impact Matrix Profile computation?
* Does approximate arithmetic impact catch-22 feature computation?
* Does approximate arithmetic impact the conclusions that can be drawn?
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