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Welcome

The plan for today
• Dr. Keogh will speak what you can do with time series analytics (hint: 

almost everything) for about 70 minutes.
• Coffee Break
• Dr. Brisk will speak about how to do this time series analytics in an 

efficient and scalable way.



Format
• Dr. Keogh’s part of this tutorial has almost no math or code.
• We want to give you the intuition behind the SOTA time series data mining.
• While these ideas are general, here we will make them concrete, by mostly 

considering a single running example (cows!). 

• Important note: A few slides are a little too “dense”, these are designed to be 
presented superficially today, and then read offline.



Our core claim

• What do you want to do with time series?
• Classification, clustering, summarization, visualization, segmentation, anomaly 

discovery, repeated pattern discovery, rule discovery, emerging behavior 
discovery etc.
• Amazingly, two simple related tools, the Distance Profile, and the Matrix Profile, 

is basically all you need to do all the above!     

• To analyze time series, there are two different situations, which have 
almost no overlap:
• Behaviors are conserved in shape (first ¾ of Keoghs talk)
• Behaviors are conserved in features (last ¼ of Keoghs talk)



Bias Alert! We are the inventors of the Matrix Profile, so there is a danger this could be self 
indulgent…    However, the Matrix Profile has exploded in popularity in the last 3 years

observations of the magnetosphere collected by the Cassini spacecraft in orbit around Saturn.. ..in this case, the best-performing 
method was the Matrix Profile.. Kiri L. Wagstaf et. al. NASA JPL.2020

(for an industrial IoT problem) Matrix Profiles perform well with almost no parameterisation needed. Anton et al ICDM 2018.
While there will never be a mathematical silver bullet, we have discovered that the Matrix Profile, a novel algorithm developed by the Keogh research group at UC-Riverside, is a powerful tool. Andrew Van 

Benschoten, lead engineer at Target.
If anybody has ever asked you to analyze time series data and to look for new insights then (the Matrix Profile) is definitely the open source tool that you'll want to add to your arsenal Sean Law, Ameritrade.
(for) intrusion detection in industrial network traffic, distances as calculated with Matrix Profiles rises significantly during the attacks. ..as a result, time series-based anomaly detection methods are capable of 

detecting deviations and anomalies. Schotten (2019).
The MatrixProfile technique is the state-of-the-art anomaly detection technique for continuous time series. Bart Goethals et. al. (ECML-PKDD 2019).

Based on the concept of Matrix Profile ..without relying on time series synchronization.. the Railway Technologies Laboratory of Virginia Tech has been developing an automated onboard data analysis for the 
maintenance track system Ahmadian et. al. JRC2019

Matrix Profile is the state-of-the-art similarity-based outlier detection method. Christian Jensen et. al. IJCAI-19
we use the exact method based on the Matrix Profile (to assess the effectiveness of therapy) Funkner et al Procedia 2019.

Recently, a research group from UCR have proposed a powerful tool - the Matrix Profile (MP) as a primitive...(we use it for) fault detection Jing Zhang et al. ICPHM 2019
Inspecting both graphs one can see that the matrix-profile algorithm was able to identify regions where there is a change on the power level over the observed band. F Lobao 2019.

RAMP builds upon an existing time series data analysis technique called Matrix Profile to detect anomalous distances...collected from scientific workflows in an online manner. Herath et. al. IEEE Big Data 2019
Based on obtained results for the considered data set, matrix profiles turned out to be most suitable for the task of anomaly detection Lohfink et al. VISSEC2019

The computation speed and exactness of the Matrix Profile make it a powerful tool and (our) results back this. Barry & Crane AICS 2019
(examining) manufacturing batches considering raw amperage (we found that the) Matrix Profile highlights anomalies Hillion & O'Connell of TIBCO Data Science. re:Invent 2019. [

we use the exact method based on the matrix profile to search for motifs can be used to monitor the patient's condition, to assess the effectiveness of therapy or to assess the physician's actions. Funknera et al. 
(The Matrix Profile is a) similarity join to measure the similarity between two given sequences. we opt for the median of the profile array as the representative distance (3D Dancing Move Synthesis from 

Music)" Anh et al. IEEE Robotics and Automation Letters
We were amazed by the power of MP and seek to incorporate it into our framework Ye and Ageno.

..adopting the concept of (the) Matrix Profile, we conduct the first attempt to.. J. Zuo et. al. Big Data 20019
The accuracies obtained ...indicate that the Matrix Profile is useful for the task at hand instead of using the CNN features directly Dhruv Batheja

To speed up online bad PMU data detection a fast discovery strategy is introduced based on (the Matrix Profile) Zhu and Hill.
Specifically, ALDI uses the matrix profile method to quantify the similarities of daily subsequences in time series meter data, Zoltan Nagy, Energy & Buildings (2020)

Our two-fold approach first leverages the Matrix Profile technique for time series data mining.. Nichiforov 2020.
the class of matrix profile algorithms.. ..is a promising approach, as it allows simplified post-processing and analysis steps by examining the resulting matrix profile structureA. Raoofy et al.

We only require information about the time of several critical incidents to train our methods, as previously. To this end, we employ the Matrix Profle.. Bellas. et al.
a matrix-profile based algorithm applied across all trajectory data against a validation set revealed four significant motifs which we defined as motif A, B, C and D.. Fernandez Alvarez 2020.

The main building block of this (game analytics) algorithm is the matrix profile, Saadat and Sukthankar AAAI2020
We leverage the Matrix Profile (MP),… to create a  micro-service-based machinery monitoring solution Naskos et al 2021

SLMAD uses statistical-learning and employs a robust box-plot algorithm and Matrix Profile (MP) to detect anomalies Team from Huawei/UCD.
We found that all these similarity or randomness measures can be estimated with variants of the highly efficient Matrix Profile (MP) algorithm.  `

https://www.researchgate.net/profile/Fabio_Santos_Lobao/publication/336316249_Intelligent_Radio_Spectrum_Monitoring/links/5d9bc29c299bf1c363ff051c/Intelligent-Radio-Spectrum-Monitoring.pdf


Comparing two time series
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How similar are these two-time series?
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Euclidean Distance Metric (ED)

Given two time series:
Q = q1…qn
C = c1…cn

We always z-normalize the data before computing the ED 
This is logically equivalent to Pearson’s Correlation 
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D(Q,C)

Euclidean Distance Metric (ED)
Z-normalization means we are ignoring mean 
and standard deviation of the data.

At least 99.9% of the time, that is the right thing 
to do.

So here D(Q,C) = D(Q2,C) = D(Q3,C) =D(Q4,C)
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Euclidean Distance Metric (ED)
Z-normalization means we are ignoring mean 
and standard deviation of the data.

At least 99.9% of the time, that is the right thing 
to do.

In Matlab

>> Q = zscore(Q);
Or
>> Q = (Q-mean(Q))/std(Q);



Let us use Apollo to make 
a running example for 
this tutorial 



The IMU used in the 
collar tags is InvenSense
MPU-92505 at 50 Hz 0 500 1000 1500 2000 2500 3000 3500
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https://www.sciencedirect.com/science/article/pii/S2772375522001277
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To be clear, X, Y and Z do not have any standard meaning for animal work.
Surge, Heave and Sway are the biological terms for acceleration directions.
(roll, pitch, yaw for rotation, are measures with a gyroscope).

It is rare that X, Y and Z can be made to exactly map to Surge, Heave and 
Sway, because of the orientation of the sensors against the animal's body. 



Alternatives to Accelerometers 

Markerless tracking of animals has 
recently become incredibly robust and 
easy.

For this tutorial, I don’t care how you got 
your time series. 

http://www.mackenziemathislab.org/deeplabcut



218,8801 1.21 Hours

Y
Apollo



218,8801 1.21 Hours

Y

1 1.07 Hours

Y

If possible, try to get labeled data.
• Could be

• Apollo vs. Dante
• Apollo before operation vs. Apollo after operation
• Apollo on pasture vs. Apollo on grain
• Apollo during winter vs. Apollo during summer
• etc.

Apollo

Dante

Try to get all labels, all
metadata at data collection 
time.
It is very frustrating to find 
interesting structure in the 
data but have no way to “go 
back in time”  to discover its 
cause.



218,8801 1.21 Hours

Y

1: grazing
2: ruminating
3: resting/other

As it happens, for this 
dataset, we have wonderfully 
detailed labels, a second-by-
second annotation of the 
behavior. 



218,8801 1.21 Hours

Y

1: grazing
2: ruminating
3: resting/other

0 200 400 600 800 1000

Lets zoom-in on 20 seconds of ruminating behavior
Call it ApolloYSUB

ApolloYSUB



0 200 400 600 800 1000

I have this one-second-long behavior ,I am going to call is query. 

I have reason to think that it is indicative of Bovine spongiform encephalopathy (BSE)

Does this query behavior exist in Apollo?  To find out, we will build a distance profile. 

ApolloYSUB

query



0 200 400 600 800 1000

To find out, we will build a distance profile.

This is simply the z-normalized Euclidean distance 
between the query and every subsequence in the 
longer time series… 

query
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0 200 400 600 800 1000

To find out, we will build a distance profile.

This is simply the z-normalized Euclidean distance 
between the query and every subsequence in the 
longer time series… 

query
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0 200 400 600 800 1000

To find out, we will build a distance profile. 

ApolloYSUB

query
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>> dist_profile = real(MASS_V2(ApolloYSUB,query));
>> plot(dist_profile)

distance profile



0 200 400 600 800 1000

To find out, we will build a distance profile. 

ApolloYSUB

query
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>> dist_profile = real(MASS_V2(ApolloYSUB,query));
>> plot(dist_profile)

distance profile

Best match

1.26
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ApolloYSUB

query
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distance profile

Best match
Second Best 
match

1.26
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ApolloYSUB

query
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distance profile

Best match
Second Best 
match

1.26

In general, the absolute numbers have 
no real meaning. If you wanted more 
interpretable numbers, you could 
convert to Pearson's correlation



concrete concretecarpet

Lets do a full worked example

I have this dataset, measuring the motion of a dog walking in my lab, first on concrete, then 
carpet, then concrete… 

0 2000 4000 6000 8000 10000 12000



concrete concretecarpet

Lets do a full worked example

0 10 20 30 40 50 60 70 80 90 100

I have this dataset, measuring the motion of a dog walking in my lab, first on concrete, then 
carpet, then concrete… 

I also have a query, for the same dog walking, on a different day.

Do you think the query is from when the dog was walking on carpet or concrete or 
something else…

Query

0 2000 4000 6000 8000 10000 12000



concrete concretecarpet

Query

0 2000 4000 6000 8000 10000 12000

7450 7500 7550 7600

This task is trivial with MASS code…
>> dist = MASS(dog ,carpet_query );   % compute a distance profile 
>> [val loc] = min(dist); % find location of match
>> disp(['The best matching subsequence starts at ',num2str(loc)])
The best matching subsequence starts at 7479

The best match, shown in context

0 2000 4000 6000 8000 10000 12000
distance profile



concrete concretecarpet

Query

0 2000 4000 6000 8000 10000 12000

7450 7500 7550 7600

Below we plot the 16 best matches. 
Note that they all occur during the 
carpet walking period. This entire 
process takes about 1/10,000th of a 
second. 

The best match, shown in context

0 2000 4000 6000 8000 10000 12000
distance profile

Note that this example is moving 
beyond nearest neighbor search, 
and is really performing semantic 
segmentation into regimes..



OK, we have seen a one-dimensional query is easy, but suppose I have multi dimensional time series?

Easy! The key insight is that the z-normalized time series is effectively unitless, so we can do each dimension individually, 
and just add them, to make a multi-dimensional distance profile.

Let's do a quick worked example…

0 250,000

MagX
Pressure



Multidimensional Nearest Neighbor (distance profile) 

I have 262,144 data points that record a penguin’s orientation (MagX) and the water/air pressure as he hunts for fish. 
Question: Does he ever change his bearing leftwards as he reaches the apex of his dive?

0 250,000

MagX
Pressure



Multidimensional Nearest Neighbor (distance profile) 

I have 262,144 data points that record a penguin’s orientation (MagX) and the water/air pressure as he hunts for fish. 
Question: Does he ever change his bearing leftwards as he reaches the apex of his dive.
This is easy to describe as a multidimensional search. The apex of a dive is just an approximately parabolic shape. I can 
create this with query_pressure = zscore([[-500:500].^2]*-1)’; it looks like this
I can create bearing leftwards with a straight rising line, like this query_MagX = zscore([[-500:500]])’; It looks like this

0 250,000

MagX
Pressure



Multidimensional Nearest Neighbor (distance profile) 

I have 262,144 data points that record a penguin’s orientation (MagX) and the water/air pressure as he hunts for fish. 
Question: Does he ever change his bearing leftwards as he reaches the apex of his dive.
This is easy to describe as a multidimensional search. The apex of a dive is just an approximately parabolic shape. I can 
create this with query_pressure = zscore([[-500:500].^2]*-1)’; it looks like this
I can create bearing leftwards with a straight rising line, like this query_MagX = zscore([[-500:500]])’; It looks like this

0 250,000

MagX
Pressure

0 1000

We have seen above how to search for a 1D pattern. For this 2D case, all we have 
to do is add the two distance profiles together, before we find the minimum value. 
Note that the best match location in 2D is different to either of the 1D queries.

load penguintest.mat
figure;, hold on;

query_pressure = zscore([[-500:500].^2]*-1)';  
dist_p = MASS_V2(penguintest(:,1),query_pressure);
query_MagX = zscore([[-500:500]])';  
dist_m = MASS_V2(penguintest(:,2),query_MagX);
[val,loc] = min([dist_m + dist_p]);          % find best match location in 2D
plot(zscore(penguintest(loc:loc+length(query_MagX),2)),'color',[0.85 0.32 0.09])
plot(zscore(query_MagX),'m')   
plot(zscore(penguintest(loc:loc+length(query_pressure),1)),’b’)
plot(zscore(query_pressure),'g')  
title(['Best matching sequence, pressure/MagX, is at ', num2str(loc)])

Best match in 2D space

Pressure

Orientation (MagX)

What are the periodic 
bumps? They are 
wingstokes as the bird 
“flies” underwater



Mini-Review: The distance profile
• This is a simple idea called: query-by-content/similarity-search/nearest-neighbor search  etc.
• You can use the distance profile to find the K-nearest neighbors to any query.
• This is an incredibly powerful and useful tool, limited only by your imagination. 
• It is by far, the most important subroutine in all of time series data mining.
--
• Suppose you have multidimensional data? You can just compute the individual distance 

profiles, sum them, then find the lowest values as the multidimensional nearest neighbor! 
(penguin example)

--
• The computation of the distance profile is incredibly fast.
• We can search the query in 24 hours of our bovine data (4,320,000 datapoints), in well 

under a second.
• This amazing speed is due to Mueen* (my former PhD student). His algorithm is called 

MASS*
• You can get MASS in most computer languages/platforms. 

*https://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html



Preview: The Matrix Profile
• We are about to learn about the Matrix Profile*
• The Matrix Profile is the best idea in time series data mining 

in the last decade ;-)
• It is a stunningly simply idea.
• Our claim is that once you have the Matrix Profile, almost 

all time series problems are trivial.
• Longer tutorials are online

*https://www.cs.ucr.edu/~eamonn/MatrixProfile.html



0 200 400 600 800 1000

ApolloYSUB

• Let us return to our small bovine example. 

• Let us pick a random subsequence of length one second, I happened to pick location 215
• Let us find its nearest-neighbor distance (excluding itself) to anywhere else in the time series. 

• (we could use the distance profile to do that)
• The distance was 6.1

100 200 300 400 500 600 700 800 900 1000

0

5
6.1

215



0 200 400 600 800 1000

ApolloYSUB

• Let do that again

• Let us pick a random subsequence of length one second, I happened to pick location 547
• Let us find its nearest-neighbor distance (excluding itself)

• (we could use the distance profile to do that)
• The distance was 2.2

100 200 300 400 500 600 700 800 900 1000

0
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2.2

547



0 200 400 600 800 1000

ApolloYSUB

• Let us do this for every location!

• The resulting curve is called the Matrix Profile

100 200 300 400 500 600 700 800 900 1000

0

5

Matrix Profile



0 200 400 600 800 1000

ApolloYSUB

• There are some parts of the Matrix Profile that have special names

• The highest location is called the Time Series Discord

100 200 300 400 500 600 700 800 900 1000

0

5 Time Series Discord

Matrix Profile



0 200 400 600 800 1000

ApolloYSUB

• There are some parts of the Matrix Profile that have special names

• The highest location is called the Time Series Discord
• The lowest locations (there will always be a tie) is called the Time Series Motif pair

100 200 300 400 500 600 700 800 900 1000

0

5 Time Series Discord

Time Series Motifs
Matrix Profile



0 500 1000 1500 2000 2500 3000

Reading a Matrix Profile
Where you see relatively low values, you know that the subsequence in the original time 
series must have (at least one) relatively similar subsequence elsewhere in the data (such 
regions are “motifs” or reoccurring patterns)

Must be conserved shapes (motifs) in the original data, 
in these three regions, we call these Time Series Motifs

(here I am deliberately only 
showing you a Matrix 
Profile, and not the time 
series it comes from)



0 500 1000 1500 2000 2500 3000

Reading the Matrix Profile
Where you see relatively low values, you know that the subsequence in the original time 
series must have (at least one) relatively similar subsequence elsewhere in the data (such 
regions are “motifs” or reoccurring patterns)

Where you see relatively high values, you know that the subsequence in the original time 
series must be unique in its shape (such areas are “discords” or anomalies).

Must be an anomaly in the original 
data, in this region.

We call these Time Series Discords



Zebra Finch
(Zebra Finch Vocalizations in MFCC, 100 day old male)

1000 2000 3000 4000 5000 6000 7000 8000

Can you see any conserved behavior here? 



Zebra Finch

1000 2000 3000 4000 5000 6000 7000 8000

Motif discovery can often surprise you.

While it is clear that this time series is not random, we did 
not expect the motifs to be so well conserved or repeated 
so many times. There is evidence of a vocabulary, and 
maybe even a grammar… 

0 200

motif 1

motif 2

motif 3

2 seconds

Matrix Profile
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Taxi Example: Part I

[a] http://futuredata.stanford.edu/ASAP/extended.pdf

Below is the hourly average of the number of NYC taxi passengers over 75 days in Fall of 2014.   

Lets compute the Matrix Profile for it, we choose a subsequence length corresponding to two days…. (next 
slide) 
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500 1000 1500 2000 2500 3000 3500
0

Taxi Example: Part II

• The highest value corresponds to Thanksgiving 
• We find a secondary peak around Nov 6th, what could it be? Daylight Saving Time! The clock going 

backwards one hour, gives an apparent doubling of taxi load.
• We find a tertiary peak around Oct 13th, what could it be? Columbus Day! Columbus Day is largely 

ignored in much of America, but still a big deal in NY, with its large Italian American community.

Matrix Profile



Australian Fur Seal (Arctocephalus pusillus) 

A quick example of the 
amazing utility of motif 
discovery (next 6 slides)



Manipulation Manipulation Forage Forage ? Moving Moving ? Eating ? 

This is an interesting dataset; can we find motifs in it?



Manipulation Manipulation Forage Forage ? Moving Moving ? Eating ? 

0 200 400 6000 200 400

We can find many interesting motifs in this 
data.

Suppose we label them A, B, C , D etc.

We can then ask the question, is there any 
patterns in the occurrence of these motifs?

In fact, there is, when we see D, we almost 
always see C within a few seconds…

If D Then C

A B                           C



Thirty - six seconds

Don’t’ care region: zero seconds
Don’t’ care region: four seconds

What does this mean?

D C



Foraging at uniform 
speed, then a…

Thirty - six seconds

Don’t’ care region: zero seconds
Don’t’ care region: four seconds



Foraging at uniform 
speed, then a…

…dramatic acceleration to 
catch a fish by the tail…

Thirty - six seconds

Don’t’ care region: zero seconds
Don’t’ care region: four seconds



Foraging at uniform 
speed, then a…

…dramatic acceleration to 
catch a fish by the tail…

…coast to 
surface…

…to flip fish for head -
first swallowing

Thirty - six seconds

Don’t’ care region: zero seconds
Don’t’ care region: four seconds



This idea is very general

0 200 400 600

0 200 400

A

B

Find motifs, label them A, B, C , D , E etc.

Now you can ask lots of interesting questions…

• We see about 10 B’s per hour in males, but only 1 or 2 B’s per hour in 
females, why?

• If I give my cow flax instead of corn feed, does it change the 
frequencies of any of the motifs?

• Which motifs (if any) are associated with my more aggressive bulls?

• Are any of the motifs dependent on the outside temperature? 

• It seems like motif D is much more common in good milkers. So, let 
me change these two things under my control, to see if it increases 
the frequency of the D motif.



218,8801 1.21 Hours

Y

1: grazing
2: ruminating
3: resting/other

Let us return to Apollo

Let's compute the Matrix Profile for this dataset

To do so, we have to compute the Euclidean Distance between the approximately 24 billion 
possible pairwise combinations of subsequences.

Because of an amazing algorithm called SCRIMP++, we can do this in seconds!

There are other algorithms: STAMP, STAMPI, STOMP, SWAMP, DAMP, SCAMP, GPU-STOMP, 
TranSCRIMP, TranSCAMP and TranSCAMPfpga…

D(Q,C)



218,8801 1.21 Hours

Y

1: grazing
2: ruminating
3: resting/other

One second

Here is the best motif.
Note that both occurrences happen during ruminating
They are 1.29 units apart
This suggest that we may have found a decision rule

If you see a subsequence(X)such that
D(X,     ) < ( 3 * 1.29 )

Then Print(‘Bovine is ruminating!’)

Here 3 is a magic constant that could be tuned, to change precision/recall
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1: grazing
2: ruminating
3: resting/other
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decision 
rule

Distance profile
query

False positive? 
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This might be a coincidence, but I see 
evidence of a meta-pattern here.
There appears to be three “bursts” of 
fidelity to the template pattern.

Quick aside



Mini Review I

•What I have shown you is amazing if you think about it.
• Knowing nothing about bovine behavior…
• Using less than eight lines of code in total.
• Using one minute of brain power, and a few seconds of CPU power.
• I built a tool to correctly annotate complex behavior in a bovine. 

• Was this a fluke?
• Let quickly do it again. 
• This time with chickens.
• This time I have four years of chicken data!
• (many different chickens in parallel, over months)



Mini Review I

• What I have shown you is amazing if you think about it.
• Knowing nothing about bovine behavior…
• Using less than eight lines of code in total.
• Using one minute of brain power, and a few seconds of CPU power.
• I built a tool to correctly annotate complex behavior in a bovine. 

• Was this a fluke?
• Let quickly do it again! 
• This time with chickens.
• This time I have four years of chicken data!
• (many different chickens in parallel, over months)



Mini Review II

• Here is the template that motif discovery found
• It was associated with Dustbathing
• I used it to search a 12,679,054,727 datapoint (four full 

years) archive of chicken behavior for the one thousand 
best matches. i.e. the 1,000 nearest neighbors  

Template

Top 1 match

Top 2 match

Top 3 match

Top 4 match

All Top 1000 matches



Mini Review II

• Here is the template that motif discovery found
• It was associated with Dustbathing
• I used it to search a 12,679,054,727 datapoint (four full 

years) archive of chicken behavior for the one thousand 
best matches. i.e. the 1,000 nearest neighbors  

Template

Top 1 match

Top 2 match

Top 3 match

Top 4 match

All Top 1000 matches

• It gets better.
• My data is annotated with two types 

of chicken has-mites|no-mites.
• I can see that Dustbathing is more 

common in the has-mites class, 
so have learned that chickens with 
mites will dustbath more.



A Strong Claim

• The Matrix Profile is the SOTA Time Series Anomaly Detector.

• This is a surprising claim, as there are about 100 papers a year published on 
this topic (including lots of deep learning methods)

• The Matrix Profile is simpler (one parameter) faster (by orders of magnitude) 
and on most bake-offs works much better.

• Lets see a quick example..



2/6/2014 8/19/2014
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Marian Turowski, Benedikt Heidrich, Kaleb Phipps, Kai Schmieder, Oliver Neumann, Ralf Mikut, and Veit Hagenmeyer. 2022. Enhancing anomaly detection 
methods for energy time series using latent space data representations. In Proceedings of the Thirteenth ACM International Conference on Future Energy 
Systems (e-Energy '22). Association for Computing Machinery, New York, NY, USA, 208–227. https://doi.org/10.1145/3538637.3538851

Anomaly Types: Technical faults in the metering infrastructure or unusual consumption.

Zoom-in

Dataset: Consumer electrical demand in Portugal
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The Highly Desirable Properties of the Matrix Profile I
• It is exact: For motif discovery, discord discovery, time series joins etc., the Matrix Profile 
based methods provide no false positives or false dismissals.
• It is simple and parameter-free: In contrast, the more general algorithms in this space 
that typically require building and tuning spatial access methods and/or hash functions.
• It is space efficient: Matrix Profile construction algorithms requires an inconsequential 
space overhead, just linear in the time series length with a small constant factor, allowing 
massive datasets to be processed in main memory (for most data mining, disk is death).
• It allows anytime algorithms: While exact MP algorithms are extremely scalable, for 
extremely large datasets we can compute the Matrix Profile in an anytime fashion, allowing 
ultra-fast approximate solutions and real-time data interaction.
• It is incrementally maintainable: Having computed the Matrix Profile for a dataset, 
we can incrementally update it very efficiently. In many domains this means we can effectively 
maintain exact joins/motifs/discords on streaming data forever.



The Highly Desirable Properties of the Matrix Profile II
• It can leverage hardware: Matrix Profile construction is embarrassingly parallelizable, 
both on multicore processors, GPUs, distributed systems etc.
• It is free of the curse of dimensionality: That is to say, It has time complexity that is 
constant in subsequence length: This is a very unusual and desirable property; virtually all 
existing algorithms in the time series scale poorly as the subsequence length grows.
• It can be constructed in deterministic time: Almost all algorithms for time series 
data mining can take radically different times to finish on two (even slightly) different datasets. 
In contrast, given only the length of the time series, we can precisely predict in advance how 
long it will take to compute the Matrix Profile. (this allows resource planning)
• It can handle missing data: Even in the presence of missing data, we can provide 
answers which are guaranteed to have no false negatives.
• Finally, and subjectively: Simplicity and Intuitiveness: Seeing the world through 
the MP lens often invites/suggests simple and elegant solutions. 



Mini Review III
• With just the Distance Profile and the Matrix Profile, you can solve many (most/all) 

problems in time series data analysis.
• Once installed on your machine, these are both one line of code!
• There is a large and growing community of Matrix Profile users, so these tools exist in 

most languages/platforms.

The Matrix Profile generalizes to multiple time series (i.e. joins) so you can ask questions 
that compare and contrast behaviors: (will not show this today)

• What patterns occur in Males but not Females (join discord)
• What patterns occur in Hereford and Holstein (join motif)
• What patterns occur before Denuding but not after Denuding (join discord)

The Matrix Profile generalizes to other useful primitives, Chains, Novelets, Shapelets, 
Platos, Snippets, FLOSS….   (will not show this today)



Switching Gears a Little
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Bad news ;-(
Sometimes there are behaviors that are not captured well in shape.

Think of human behaviors: walking/running/swimming/cycling all have characteristic shapes.  Dynamic Behaviors  

But there is no shape for reading/watchingTV/resting/sleeping etc. 

Instead, we have to consider features. 

shape
feature
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Instead of pulling out subsequence shapes, lets pull out subsequences, and measure features… 

We can then use the many algorithms that ingest feature vectors, nearest neighbor, decision trees, naïve Bayes,… 

Minimum
Maximum 
Entropy
Zero crossing rate
Skewness
Fractal dimension
::: 

feature 
vectori

subsequencei
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Minimum
Maximum 
Entropy
Zero crossing rate
Skewness
Fractal dimension
::: 

feature 
vectori

subsequencei

This begs the question, which features to use?

There are more than 9,000 suggested features for 
time series! [1]

Many of these features are redundant with each 
other, or just useless…

Jones and Fulcher searched through all these 
features to find a small subset that:
• Are mostly non-redundant

• Provide discrimination between semantically different 
classes in most real-world domains

The small set is called Catch-22 [2]

I think Catch-22 is one of the best ideas in time 
series data mining in the last decade..

1. Fulcher B.D., Little M.A., Jones N.S . Highly comparative time-
series analysis: the empirical structure of time series and their
methods. J. Roy. Soc. Interface 10, 20130048 (2013)

2. Lubba C, Sethi S, Knaute P, Schultz S, Fulcher B, Jones NS
(2019) catch22: CAnonical Time-series CHaracteristics. Data
Min Knowl Disc 33(6):1821–1852
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feature 
vectori

subsequencei

Unfortunately, the names of the Catch-22 
features are poor, with no real mnemonic 
value.

1. Fulcher B.D., Little M.A., Jones N.S . Highly comparative time-
series analysis: the empirical structure of time series and their
methods. J. Roy. Soc. Interface 10, 20130048 (2013)

2. Lubba C, Sethi S, Knaute P, Schultz S, Fulcher B, Jones NS
(2019) catch22: CAnonical Time-series CHaracteristics. Data
Min Knowl Disc 33(6):1821–1852

Feature Names
DN_OutlierInclude_n_001_mdrmd
DN_OutlierInclude_p_001_mdrmd
DN_HistogramMode_5
DN_HistogramMode_10
SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1
SB_TransitionMatrix_3ac_sumdiagcov
FC_LocalSimple_mean1_tauresrat
SB_MotifThree_quantile_hh
CO_HistogramAMI_even_2_5
CO_Embed2_Dist_tau_d_expfit_meandiff
SB_BinaryStats_diff_longstretch0
MD_hrv_classic_pnn40
SB_BinaryStats_mean_longstretch1
FC_LocalSimple_mean3_stderr
SP_Summaries_welch_rect_area_5_1
SP_Summaries_welch_rect_centroid
CO_f1ecac
CO_FirstMin_ac
IN_AutoMutualInfoStats_40_gaussian_fmmi
PD_PeriodicityWang_th0_01
SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1
CO_trev_1_num



Class A 
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Lets see how this works.

Lets take a time series subsequence from Class A
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Lets see how this works.

Lets take a time series subsequence from Class A

Lets measure its 22 features, and summarize them 
with a color-coded bar chart…
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PD_PeriodicityWang_th0_01
SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1
CO_trev_1_num
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Lets see how this works.

Lets take a time series subsequence from Class A

Lets measure its 22 features, and summarize them 
with a color-coded bar chart…

This is now a proxy for Class A

We will use this for classification, 
clustering, anomaly detection etc.
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Now let us compare the feature vector to two 
unknown instances, ‘1’ and ‘2’ 

Which one is also in Class A?

Unknown 2

Unknown 1
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Unknown 2
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Unknown 1

Which one is also in Class A?

It is of course, Unknown 2



Class A 

Unknown 2
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Unknown 1

Which one is also in Class A?

It is of course Unknown 2

An important note

In this example the class happens to be 
preserved in both shape and feature.

More generally, there are time series that 
are conserved only in features.

Think of human behaviors:

Conserved in shape:
walking/running/swimming/cycling

Conserved in feature:
reading/watchingTV/resting/sleeping



Once you have your feature vectors, you can 
(among many other things) do the analogue of 
Distance Profile and Matrix Profile.

Lets see a quick example: 

We have a mouse walking on a circular treadmill..

Let's build a catch-22 Matrix Profile. The high 
values should be when there are anomalies in the 
data…

500

200

Y -Axis location of right  paw (excerpt)



Occlusion of 
paw by tail

Tail is 
mistaken 
for paw

Normal 
gait, then.. 

..“riding” 
the roller..

500

200

..back to 
normal gait.

40-seconds

..“riding” 
the roller..

Y-Axis location of right paw (excerpt)

A B BC C D

This works, beautifully  
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This works, beautifully  



Summary  
• For data that has conserved shape, the Distance Profile and the Matrix 

Profile will solve 90 to 100% of your task at hand. 
• For data that has conserved features, using catch-22 with an appropriate 

algorithm will get you a long way. You can do a little better sometimes:
• Reducing the 22 features to an even smaller subset
• Augmenting the features with one or two custom features.

• We only looked at univariate data, but you normally have many dimensions, 
say X, Y, Z ,roll, pitch, yaw, temperature, pressure..
• The Distance Profile and the Matrix Profile trivially generalize to multidimensions.
• However, in most cases, you can solve your problem using only one dimension. 
• Using catch22 with multidimensional data is possible, but less well understood.  



Streaming Time Series 
Analysis for FPGAs

Eamonn Keogh 
eamonn@cs.ucr.edu

FCCM Tutorial 

PhillipBrisk
philip@cs.ucr.edu

Questions?



Backup Slides Below



Are there any repeated patterns in my data?

0 350,000

The dataset is an hour of EOG (eye movement) data of a sleeping patient, sampled at 100 
Hz. It looks very noisy, it is not obvious that there is any repeated structure…  

Let us run the Matrix Profile, looking for four-second long motifs…
>> load eog_sample.mat
>> [matrixProfile profileIndex, motifIndex, discordIndex] = interactiveMatrixProfileVer3_website(eog_sample, 400);

The code takes a while to fully converge, but in just a few seconds, we see some stunningly well conserved motifs…

Motif 1 Motif 2

Having found the motifs, we can ask, what are 
they? A quick glance at a paper by Noureddin
et. al. locates a very similar pattern (with 
some time warping) called eye-blink-
artifact. 

Motif 2

Figure 1.(f) of 
Noureddun et al

Note that there may be more examples of each motif. We should take one 
of the above, and use MASS to find the top 100 neighbors… See Have we 
ever seen a pattern that looks just like this?.  We can also adjust the range 
parameter r inside the motif extraction code.

Four seconds Four seconds



The datasets is Taxi demand, in New York City, in the last three months of the year.
We choose 100 datapoints, which is about two days long (the exact values do not matter much here).

>> load taxi_3_months.txt
>> [matrixProfile, profileIndex, motifIndex, discordIndex] = interactiveMatrixProfileVer3_website(taxi_3_months ,100);

What are the three most unusual days in this three-month long dataset? 

0 500 1000 1500 2000 2500 3000 3500

1 3600

1 3600

The code pops up the matrix profile tool, and one second later, we are done! The three most unusual days 
correspond to the three highest values of the matrix profile (i.e. the discords), but what are they?
• The highest value corresponds to Thanksgiving
• We find a secondary peak around Nov 6th, what could it be? Daylight Saving Time! The clock going backwards one hour, 

gives an apparent doubling of taxi load.
• We find a tertiary peak around Oct 13th, what could it be? Columbus Day! Columbus Day is largely ignored in much of 

America, but still a big deal in NY, with its large Italian American community.

ThanksgivingDaylight Saving Time
Columbus Day



Is there any pattern that is common to these two time series? 

Lets assume that the common pattern is 3 seconds, or 300 datapoints long.
Let us concatenate the two time series, and smooth them (just for visualization purposes, we don’t really need to)

Now let us find the top motif, but insist that one motif comes before 24289, and one after…

>> load('Queen_vs_Ice.mat’)
>> whos
Name                      Size                Bytes  Class     Attributes
mfcc_queen 1x24289 194312  double              
mfcc_vanilla_ice 1x23095            184760  double 

>> interactiveMatrixProfileAB(smooth([mfcc_queen , mfcc_vanilla_ice]), 300, 24289); % This will spawn this plot ->

The top join motif shows a highly conserved pattern.

It is the famous bass line from Under Pressure by Queen
which was plagiarized by Vanilla Ice.

0 0.5 1 1.5 2 2.5

104

queen
ice

ice

The top join motif
The concept for this example comes from Dr. Diego Furtado Silva.
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Find the most conserved pattern that happens at least once every two days in this dataset

(probable) hair dryer

(probable) electric kettle

The question is a little underspecified, as the length for the conserved patterns was not given. Let us try two hours, which is about 
800 data points. 
The full 20,000 datapoints represents about 14 days of electrical demand data for a house in the U.K. Thus we first need to divide it 
into approximate 2 day chunks.

>> load TwoWeekElectrical
>> seven_two_day_chunks = divide_data(T);

Now we just need to call the consensus motif code.
>> consensus_motifs = consensusMotifs(seven_two_day_chunks,800); % 800 is the length of subsequence

The most conserved pattern

The code returns the seven time series below.  Note that the basic 
pattern is highly conserved, given how noisy the data is. 
The similarity between the items can be better seen if we cluster the 
time series with a single linkage dendrogram. 



The dataset is 3 years of Italian power 
demand data which represents the hourly 
electrical power demand of a small Italian city 
for 3 years beginning on Jan 1st 1995.   

We just need to call Time Series Snippets algorithm…
>> load('ItalianPowerDemand.mat’)
>> [fraction,snippet,snippetidx]= snippetfinder(data(:,4),2,200,30);

It will pop open three windows, which are snippet 1, snippet 2 and the regime bar.

Snippet 1

If you had to summarize this long time series with just two shorter examples, what would they be?

Jan/1/1995 May/31/1998

We searched for the top-2 snippets of length 200. This was our quick “eyeballing” guess as to the length of a 
week, but it is actually about 8.3 days. Note that the snippets are not align to start at the same day of the 
week (this is a trivial constraint to add if desired).

Snippet 2 8 days

Sunday

Jan/1/1995 May/31/1998

We obtain the “regime bar,” which tells us which snippet “explains” which region of data. As it 
happens, Snippets seem to represent summer and winter regimes respectively.

Snippet 1 Snippet 2

8 days

Sunday

What makes the snippets different? (tentative answer) 
In the winter, people go home after work (and turn on 
heaters/appliances). In the summer, people do more 
leisure activities after work and don’t return home until 
it is cooler.



Are there any patterns that appear as time reversed versions of themselves in my data?

Lets us load the data, and concatenate it to itself, after flipping left to right.
We can then search for a join motif, that spans 5046, the length of the original time series.
If we find a good join motif, it means that the conserved pattern is time reversed! 

>> load('mfcc.mat’)
>> length(mfcc1(1,:))
ans = 5046
>> interactiveMatrixProfileAB(([mfcc1(1,:)'; flipud(mfcc1(1,:)')]), 150, 5046); % This will spawn this plot ->

The top join motif shows a highly conserved pattern.
Why would a pattern occur time reversed? 

0 1000 2000 3000 4000 5000

1 150

The top join motif

0 21:02

0 seconds 40

minutes:seconds

MFC8”Symphony 
No. 47

0 seconds 40

14:16 

14:53 

al roverso

“The most extraordinary of all canonic movements from this 
time is of course from Symphony No. 47. Here Haydn writes out 
only one reprise of a two-reprise form, and the performer must 
play the music ‘backward’ the second time around”.
The data is the 1st MFCC of this piece of music. 1 150

reverse time



When does the regime change in this time series? 

In this dataset, at time stamp 7,500, bleeding was induced in an otherwise healthy pig. This changes the pig’s APB measurement, but
only very slightly. Could we find the location of the change, if we were not told it? Moreover, can we do this with no domain knowledge?
In other words, can we detect regime changes in time series?

>> TS = load('PigInternalBleedingDatasetArtPressureFluidFilled_100_7501.txt');
>> CAC = RunSegmentation(TS, SL); %SL is the length of subsequence
>> plot(CAC,'c’)
>> [~, loc] = min(CAC) %value of loc is 7460 which is the approximation of exact value 7500

Here, we choose SL to be 100, approximately the length of one period of arterial pressure (or the period of whatever repeated patterns you have
in your data), however, up to half or twice that value would work just as well. The output curve, the CAC, minimizes at just the right place.
How does it do it? In brief, if we examine the pointers in the Matrix Profile Index, we will find that very few will cross over the location of a regime
change (most healthy beats have a nearest neighbor that is another healthy beat, most “bleeding” beats have a nearest neighbor that is another
“bleeding” beat), it is this lack of pointers that cross over the regime change that is what the CAC is measuring.

0 15000

Arterial Blood Pressure Healthy Pig.. …internal bleeding induced

0 15000
0

0.5

1

CAC

0 5000 10000 15000
40

100

The minimum value of the CAC suggests the location of  the regime change



Are there any patterns that repeat in my data, but at two distinct lengths?

See also “Is there any pattern that is common to these two time series?”

We can solve this with a quick and dirty trick. The code interactiveMatrixProfileAB(T,m,crossover) searches time 
series T for a motif of length m, such that one of the motif pair occurs before crossover and one occurs after crossover.
We can take a time series and append it to a rescaled copy itself, setting the to the length of the original time series. Now when we 
find motifs, we are finding one at the original scale, and one at the rescaled size. 
In this case, I want to know if any of my insect behaviors happens at length 5,000 and at 10,000, so I type…

>> load insectvolts.mat % load some insect epg data
>> interactiveMatrixProfileAB([insectvolts ; insectvolts(1:2:end)], 5000, length(insectvolts));  % search the appended data

No need to let it converge, after a few seconds we have our answer…

Two motifs in the rescaled space Two motifs in the original, true space

This behavior took 20 seconds

This behavior took 40 seconds

This behavior took 20 seconds

This behavior took 40 seconds

Note you can do this for non 
integer rescaling. Matlab will warn 
you, but it is defined and allowed.

Note that the bottom motif is 
discovered in spite of having a lot 
of noise in one of the occurrences.

Note that the dimensionality of 
the motifs is 5,000! This would 
have been unthinkable before the 
Matrix Profile.

Voltage reading



How can I optimize similarity search in a long time series?

Suppose you want to find a query inside a long time series, say of length 67,000,000.

First trick: MASS (and several other FFT and DWT ideas) have their best case when the data length is a power of two, so pad the data to make it a power of 
two (padding with zeros works fine). 

Second trick: MASS V3 is a piecewise version of MASS that performs better when the size of the pieces are well aligned with the hardware. You need to 
tune a single parameter, but the parameter can only be a power of two, so you can search over say 210 to 220. Once you find a good value, you can 
hardcode it for your machine.

rng('default')  % Set seed for reproducibility
data= cumsum(randn(1,67000000));  % make data
query= cumsum(randn(1,2^13));     % make a long query
tic

dist = MASS_V2(data ,query );
[val,loc] = min(dist);          % find best match location
hold on
plot(zscore(data(loc:loc+length(query))))
plot(zscore(query),'r')  
disp(['Best matching sequence is at ', num2str(loc)])

toc

figure
data = [data zeros(1,2^nextpow2(67000000) -67000000)]; % pad data to 
tic % next pow of 2

dist = MASS_V2(data ,query );
[val,loc] = min(dist);           % find best match location
hold on
plot(zscore(data(loc:loc+length(query))))
plot(zscore(query),'r')  
disp(['After padding: Best matching sequence is at ', num2str(loc)])

toc

figure
tic

dist = MASS_V3(data ,query, 2^16 );
[val,loc] = min(dist);      % find best match location
hold on
plot(zscore(data(loc:loc+length(query))))
plot(zscore(query),'r')  
disp(['MASS V3 & padding: Best matching sequence is at ', num2str(loc)])

toc

see also “How do I quickly search this 
long dataset for this pattern, if an 
approximate search is acceptable?”

Na
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Best matching sequence is at 32463217

Elapsed time is 14.30 seconds.

After padding: Best matching sequence is at 32463217

Elapsed time is 12.31 seconds.

MASS V3 & padding: Best matching sequence is at 32463217

Elapsed time is 5.82 seconds.

If you run this code, it will output…

Note that it outputs the exact same 
answer, regardless of the optimizations, 
but it is fast, then faster, then super fast.



>> load eog_sample.mat
>> [MP profileIndex, motifIndex, discordIndex] = interactiveMatrixProfileVer3_website(eog_sample, 400); 





>> load insectvolts.mat % load some insect epg data
>> query = ([[[1:600].^0.2] [[1:300].^0.2] [[1:600].^0.2]]);
>> uniform_scaling_search(smooth(insectvolts,10), query);



Are there any evolving patterns in this dataset (time series chains)

0 2000 4000 6000 8000 10000 12000 14000 16000
-1000
-500
0

500
1000
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Normal 
Breathing

Note the increasing “gulp” artifact that happens between cycles. Also note that it begins to happen earlier and earlier in 
the cycle. What does this mean?
Here is the (lightly edited) annotation of Dr. Gregory Mason (LA BioMed/UCLA) an expert on cardiopulmonary interactions.
“The gulps are attempts to inspire against an obstruction coming the back of the tongue. The large signals are from the machine which do 
not necessarily reach the patient, the small gulps are pathologic attempts to breathe. Why does it increase? With each successive breath 
the patient tries harder to inspire. It finally is 'synchronized' and you don't see the small patient signal, and this event cycles over and 
over. The cycling is best seen without treatment if one looks up "crescendo snoring," a hallmark of obstructive sleep apnea.”

This is a dataset of respiration from a sleep study. Each breath appears to be about 360 data points long. So lets search for time series 
chains of length 360…

>> load respiration.mat
>> TSC1_demo(respiration , 360);

The algorithm finds the highlighted chains below.

0 2000 4000 6000 8000 10000 12000 14000 16000
-1000
-500
0

500
1000

Let us zoom in on the chains, to better see what is going on…



Welcome
• Congrats! About 90% of the best minds in data science are implicitly or 

explicitly working on the problem of getting people to click on ads! You 
are doing something more interesting and noble. 
• If you like this tutorial, you may enjoy my others ;-) 
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Streaming Time Series

Current window of recently sampled datapoints
Old (discarded)

datapoints

……
Next datapoint

to sample

Compute occurs here



Offline vs. Streaming

• Offline
• Entire time series is available in memory or on disk
• Example: Read time series from disk

Compute Matrix Profile or catch-22 features
Write Matrix Profile or catch-22 features to disk

• Streaming
• Time series length is unknown (treat as infinite)
• Datapoints stream from a sensor or across a network
• Computed result for the current window may be consumed immediately
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Streaming with your CPU (or GPU)
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Streaming Time Series: Sensor

Old (discarded)
datapoints
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Streaming Application



Streaming Time Series: Network

Current window of recently sampled datapoints
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datapoints

……
FPGA

Packet

Extract 
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Streaming Application



Offline à Streaming

• Many time series algorithms are originally developed and evaluated 
in an offline context and development goes no further than a paper 
published at KDD, ICDM, etc.

• Very little work on how to convert an algorithm from offline to 
streaming and how to quantify or evaluate algorithmic differences.



Simple Example: Similarity

Objective Measure: 
• How “similar” are the 

shapes of Q and C?

 Unnormalized  Normalized  

Q 

C 
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Figure 8. A visual intuition of the necessity to normalize time series before measuring the distance between 
them. The two sequences Q and C, on the left appear to have approximately the same shape, but have different 
offsets in the Y-Axis. The Euclidean distance between two sequences is proportional to the length of the gray 
hatch lines shown connecting the two sequences in the two graphics on the right. In the first case the data is 
unnormalized, and the reported distance greatly overstates the subjective dissimilarity. Normalizing the data 
reveals the true similarity of the two time series. 

What would happen if we didn’t normalize the time series before measuring the 
similarity? We can illustrate by clustering some Space Shuttle telemetry data with and 
without normalization as in Figure 9. 

1

5

2

7

3

4

6

1  

2  

3  

4  

5  

6  

7  

1  

5  

2  

6  

4  

7  

3  

A  B C
 

Figure 9. A visual explanation of the need to normalize time series before measuring their similarity. A) Seven 
time series obtained from inertial sensors on board Space Shuttle mission STS-57. B) The clustering obtained 
when we first normalize the signals, the clustering appears very natural and subjectively correct. C) The 
clustering obtained if we do not normalize the signals, the clustering appears essentially random. 

The results are quite startling, without normalization time series similarity has essentially 
no meaning. More concretely, very small changes in offset rapidly dwarf any information 
about the shape of the two time series in question. For example, if we clustered just the 
mean values of the time series, the resulting dendrogram would be almost 
indistinguishable from the one shown in Figure 9.C. It is important to realize that 
although Figure 9 shows time series with greatly differing offsets for clarity, even 



Simple Example: Similarity

Objective Measure: 
• How “similar” are the 

shapes of Q and C?

Euclidean Distance:

• 𝐸𝐷 = ∑!"#
$ 𝑞! − 𝑐! %
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Figure 8. A visual intuition of the necessity to normalize time series before measuring the distance between 
them. The two sequences Q and C, on the left appear to have approximately the same shape, but have different 
offsets in the Y-Axis. The Euclidean distance between two sequences is proportional to the length of the gray 
hatch lines shown connecting the two sequences in the two graphics on the right. In the first case the data is 
unnormalized, and the reported distance greatly overstates the subjective dissimilarity. Normalizing the data 
reveals the true similarity of the two time series. 

What would happen if we didn’t normalize the time series before measuring the 
similarity? We can illustrate by clustering some Space Shuttle telemetry data with and 
without normalization as in Figure 9. 
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Figure 9. A visual explanation of the need to normalize time series before measuring their similarity. A) Seven 
time series obtained from inertial sensors on board Space Shuttle mission STS-57. B) The clustering obtained 
when we first normalize the signals, the clustering appears very natural and subjectively correct. C) The 
clustering obtained if we do not normalize the signals, the clustering appears essentially random. 

The results are quite startling, without normalization time series similarity has essentially 
no meaning. More concretely, very small changes in offset rapidly dwarf any information 
about the shape of the two time series in question. For example, if we clustered just the 
mean values of the time series, the resulting dendrogram would be almost 
indistinguishable from the one shown in Figure 9.C. It is important to realize that 
although Figure 9 shows time series with greatly differing offsets for clarity, even 
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about the shape of the two time series in question. For example, if we clustered just the 
mean values of the time series, the resulting dendrogram would be almost 
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Z-Normalization: Offline vs. Streaming

• Many offline time series algorithms begin by Z-normalizing the entire 
time series
• This cannot work in a streaming context!

• If applied in an offline context, there may be numerical differences 
between results obtained from offline vs. streaming Z-normalization
• Understanding and bounding these differences is key to effectively converting 

an offline algorithm to streaming, prior to FPGA implementation

• This phenomena is not exclusively limited to Z-Normalization



The Matrix Profile m

m

Key:
Small distances are blue
Large distances are red
Dark stripe is excluded

• Need to compare every length-m 
subsequence in the time series

• This means we need the whole 
time series before we can 
compute the Matrix Profile

• Is there a streaming solution?
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Fig. 1. Matrix Profile (MP) computation for subsequences of lengthm: ci, j denotes the Pearson Correlation
between the ith and jth subsequences,Ti,m andTj,m for all j, excluding an exclusion zone surroundingTi,m .
The maximum Pearson Correlation value cmax

i is stored as the ith entry in the MP.

Fig. 2. Illustration of the parameters used for LAMP inference on a streaming time series.

Figure 2 illustrates the LAMP inference process. Each input consists of J z-normalized (zero
mean and unit variance) subsequences of length M, extracted with stride S. This scheme de!nes
an extraction window in the data, W, where | |W| | = J · S +M − 1. We slide W across the time series
and extract a new input for the model for each position of W. This procedure generates vectors
of length M with J channels as inputs to LAMP’s neural network (a CNN), shown in Figure 3. For
each input, the model predicts J · S LAMP values, one for each subsequence in W.

LAMP’s CNN is a simpli!ed version of ResNet [51] for time series classi!cation [42, 54]. Model
inputs and outputs are modi!ed to support concurrent predictions. The !rst layer in the LAMP
CNN is batch normalization (omitted from Figure 3 for simplicity); each convolutional layer in the
model is followed by a batch normalization layer (also omitted from Figure 3), which are aggre-
gated by Addition layers followed by ReLU activation functions. The !nal three layers are Global
Average Pool (GAP), a fully connected layer, and a sigmoid activation function. Figure 3 reports
the kernel dimensions and number of !lters used below each convolution layer.

3.3 Xilinx DPU: Objective and Technical Challenges
The Xilinx DPU is a programmable architecture that accelerates many common CNN operations,
such as convolution, deconvolution, max pooling, and fully connected layers [45]. The objective of

ACM Transactions on Recon!gurable Technology and Systems, Vol. 16, No. 1, Article 12. Pub. date: December 2022.
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The Matrix Profile: 
Problems with the Existing Method

• This method computes the EXACT Matrix Profile values; however…

• There are three significant downsides:
• It is too slow for any meaningful analysis on long or fast streams
• It depends on the availability of the previous data
• The runtime grows with the number of observed sequences.



Representative Matrix Profile

• Key Assumption: From a stream S we have prior-observed data R that 
is representative of future observations.

• This results in a good approximation of the Exact (Oracle) MP.
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Learned Approximate Matrix Profile (LAMP)

Objectives
• Be fast enough to 

operate in real-time
• Be able to operate with 

power/memory/disk 
constraints.
• Be dataset agnostic



Approximate the Matrix Profile…

FPGA-based Acceleration of Time Series Similarity Prediction: From Cloud to Edge 12:5

Fig. 1. Matrix Profile (MP) computation for subsequences of lengthm: ci, j denotes the Pearson Correlation
between the ith and jth subsequences,Ti,m andTj,m for all j, excluding an exclusion zone surroundingTi,m .
The maximum Pearson Correlation value cmax

i is stored as the ith entry in the MP.

Fig. 2. Illustration of the parameters used for LAMP inference on a streaming time series.

Figure 2 illustrates the LAMP inference process. Each input consists of J z-normalized (zero
mean and unit variance) subsequences of length M, extracted with stride S. This scheme de!nes
an extraction window in the data, W, where | |W| | = J · S +M − 1. We slide W across the time series
and extract a new input for the model for each position of W. This procedure generates vectors
of length M with J channels as inputs to LAMP’s neural network (a CNN), shown in Figure 3. For
each input, the model predicts J · S LAMP values, one for each subsequence in W.

LAMP’s CNN is a simpli!ed version of ResNet [51] for time series classi!cation [42, 54]. Model
inputs and outputs are modi!ed to support concurrent predictions. The !rst layer in the LAMP
CNN is batch normalization (omitted from Figure 3 for simplicity); each convolutional layer in the
model is followed by a batch normalization layer (also omitted from Figure 3), which are aggre-
gated by Addition layers followed by ReLU activation functions. The !nal three layers are Global
Average Pool (GAP), a fully connected layer, and a sigmoid activation function. Figure 3 reports
the kernel dimensions and number of !lters used below each convolution layer.

3.3 Xilinx DPU: Objective and Technical Challenges
The Xilinx DPU is a programmable architecture that accelerates many common CNN operations,
such as convolution, deconvolution, max pooling, and fully connected layers [45]. The objective of
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… Using a Convolutional Neural Network
12:6 A. Kalantar et al.

Fig. 3. The CNN used for LAMP inference. Batch normalization layers are omi!ed to simplify the
presentation.

Fig. 4. Zynq DPU architecture.

this work is to accelerate LAMP neural network inference on the Xilinx Ultra96-V2 and Alveo U280
FPGA boards, leveraging the DPU to achieve a balance between performance and programmability.
The on-board Xilinx Zynq UltraScale+ FPGA features two Arm CPUs and has su!cient capacity
to realize at most one DPU, with additional logic remaining to implement custom IP block acceler-
ators; the larger capacity UltraScale+ FPGA in the Alveo U280 card can "t multiple DPU instances.

We ran into several technical challenges. First, the DPU does not support the Global Average
Pooling (GAP) and sigmoid layers, shown on the right-hand-side of Figure 3; these layers must
be implemented in software running on one of the Arm CPU cores (UltraScale) or as custom hard-
ware IP block accelerators (Ultrascale or Alveo). Second, implementing the fully connected layer,
which sits between the GAP and sigmoid layers, would entail signi"cant data transfer overhead
between the DPU and the Arm CPU / IP block. Third, the DPU for Ultra96-V2 board uses di#er-
ent con"gurations to perform the convolutional layer (including accumulation and ReLUs); with
space for just one DPU, dynamic recon"guration during inference would be needed to support the
fully connected layer; the alternative, which we adopted, is to implement the fully connected layer
externally on the CPU or as an IP block. This approach worked well for both platforms.

3.4 DPU for Edge Processing
Figure 4 depicts the DPU architecture for Zynq devices. The DPU features user-con"gurable pa-
rameters to optimize resource utilization and to select which features are needed for a given de-
ployment scenario. For example, our implementation does not use softmax, channel augmenta-
tion, or depthwise convolution. Seven DPU variants exist, which di#er in the amount of paral-
lelism provided by the convolution units, with IDs ranging from B512 (smallest, 512 operations per
clock cycle) to B4096 (largest, 4,096 operations per clock cycle); the largest variant that "ts onto
the Ultra96-V2 board is the B2304. The DPU compiler translates a neural network model into a

ACM Transactions on Recon"gurable Technology and Systems, Vol. 16, No. 1, Article 12. Pub. date: December 2022.



Assessment: Seismic Dataset



Edge-Scale Deployment: AMD/Xilinx Zynq

12:6 A. Kalantar et al.

Fig. 3. The CNN used for LAMP inference. Batch normalization layers are omi!ed to simplify the
presentation.

Fig. 4. Zynq DPU architecture.

this work is to accelerate LAMP neural network inference on the Xilinx Ultra96-V2 and Alveo U280
FPGA boards, leveraging the DPU to achieve a balance between performance and programmability.
The on-board Xilinx Zynq UltraScale+ FPGA features two Arm CPUs and has su!cient capacity
to realize at most one DPU, with additional logic remaining to implement custom IP block acceler-
ators; the larger capacity UltraScale+ FPGA in the Alveo U280 card can "t multiple DPU instances.

We ran into several technical challenges. First, the DPU does not support the Global Average
Pooling (GAP) and sigmoid layers, shown on the right-hand-side of Figure 3; these layers must
be implemented in software running on one of the Arm CPU cores (UltraScale) or as custom hard-
ware IP block accelerators (Ultrascale or Alveo). Second, implementing the fully connected layer,
which sits between the GAP and sigmoid layers, would entail signi"cant data transfer overhead
between the DPU and the Arm CPU / IP block. Third, the DPU for Ultra96-V2 board uses di#er-
ent con"gurations to perform the convolutional layer (including accumulation and ReLUs); with
space for just one DPU, dynamic recon"guration during inference would be needed to support the
fully connected layer; the alternative, which we adopted, is to implement the fully connected layer
externally on the CPU or as an IP block. This approach worked well for both platforms.

3.4 DPU for Edge Processing
Figure 4 depicts the DPU architecture for Zynq devices. The DPU features user-con"gurable pa-
rameters to optimize resource utilization and to select which features are needed for a given de-
ployment scenario. For example, our implementation does not use softmax, channel augmenta-
tion, or depthwise convolution. Seven DPU variants exist, which di#er in the amount of paral-
lelism provided by the convolution units, with IDs ranging from B512 (smallest, 512 operations per
clock cycle) to B4096 (largest, 4,096 operations per clock cycle); the largest variant that "ts onto
the Ultra96-V2 board is the B2304. The DPU compiler translates a neural network model into a
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Cloud Deployment: AMD/Xilinx Alveo U280
FPGA-based Acceleration of Time Series Similarity Prediction: From Cloud to Edge 12:7

Fig. 5. High-throughput DPUCAHX8H architecture, comprising three DPU instances with multiple batch
engines for parallel data processing.

Fig. 6. Low-latency DPUCAHX8L architecture, comprising two DPU instances with one convolution engine,
scheduler, and code FIFO units.

sequence of DPU instructions. After start-up, the DPU fetches these instructions from o!-chip
memory to control the compute engine’s operations. The compute engine employs deep pipelin-
ing and comprises one or more processing elements (PEs), each consisting of multipliers, adders,
and accumulators. DSP blocks can be clocked at twice the frequency of general logic.

The DPU bu!ers input, output, and intermediate values in BRAM to reduce external memory
bandwidth. It directly connects to the Processing System (PS) through the Advanced eXtensi-
ble Interface 4 (AXI4) to transfer data. The host program uses the Xilinx Deep Neural Network
Development Kit (DNNDK) to control the DPU, service interrupts, and coordinate data trans-
fers. In our design, data transfers were necessary, as the "nal three layers of the CNN (GAP, fully
connected, and sigmoid) were performed outside the DPU.

3.5 DPU for Cloud Acceleration
Two di!erent DPU architectures are currently available that support the High Bandwidth
Memory (HBM)2 on the Alveo FPGA card; one is high-throughput (Figure 5) and the other is
low-latency (Figure 6). The Alveo DPUs are named DPUCAHX8, as they are targeted towards
CNN applications (C) for the Alveo platform with HBM (AH) using 8-bit quantization (X8).
The two variants are named DPUCAHX8H (high-throughput) and DPUCAHX8L (low-latency), re-
spectively. Both architectures are provided as device binary "les and cannot be further con"gured.
The high-throughput architecture is con"gured with three DPUCAHX8H DPUs; the low-latency
architecture is con"gured with two DPUCAHX8L DPUs. The DPU compiler for Alveo allows the

2While FA-LAMP is optimized for streaming time series generated by external sensors, we evaluate FA-LAMP by loading
the time series into the HBM and streaming it directly into the FPGA.
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Fig. 5. High-throughput DPUCAHX8H architecture, comprising three DPU instances with multiple batch
engines for parallel data processing.

Fig. 6. Low-latency DPUCAHX8L architecture, comprising two DPU instances with one convolution engine,
scheduler, and code FIFO units.

sequence of DPU instructions. After start-up, the DPU fetches these instructions from o!-chip
memory to control the compute engine’s operations. The compute engine employs deep pipelin-
ing and comprises one or more processing elements (PEs), each consisting of multipliers, adders,
and accumulators. DSP blocks can be clocked at twice the frequency of general logic.

The DPU bu!ers input, output, and intermediate values in BRAM to reduce external memory
bandwidth. It directly connects to the Processing System (PS) through the Advanced eXtensi-
ble Interface 4 (AXI4) to transfer data. The host program uses the Xilinx Deep Neural Network
Development Kit (DNNDK) to control the DPU, service interrupts, and coordinate data trans-
fers. In our design, data transfers were necessary, as the "nal three layers of the CNN (GAP, fully
connected, and sigmoid) were performed outside the DPU.

3.5 DPU for Cloud Acceleration
Two di!erent DPU architectures are currently available that support the High Bandwidth
Memory (HBM)2 on the Alveo FPGA card; one is high-throughput (Figure 5) and the other is
low-latency (Figure 6). The Alveo DPUs are named DPUCAHX8, as they are targeted towards
CNN applications (C) for the Alveo platform with HBM (AH) using 8-bit quantization (X8).
The two variants are named DPUCAHX8H (high-throughput) and DPUCAHX8L (low-latency), re-
spectively. Both architectures are provided as device binary "les and cannot be further con"gured.
The high-throughput architecture is con"gured with three DPUCAHX8H DPUs; the low-latency
architecture is con"gured with two DPUCAHX8L DPUs. The DPU compiler for Alveo allows the

2While FA-LAMP is optimized for streaming time series generated by external sensors, we evaluate FA-LAMP by loading
the time series into the HBM and streaming it directly into the FPGA.
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Fig. 3. The CNN used for LAMP inference. Batch normalization layers are omi!ed to simplify the
presentation.

Fig. 4. Zynq DPU architecture.

this work is to accelerate LAMP neural network inference on the Xilinx Ultra96-V2 and Alveo U280
FPGA boards, leveraging the DPU to achieve a balance between performance and programmability.
The on-board Xilinx Zynq UltraScale+ FPGA features two Arm CPUs and has su!cient capacity
to realize at most one DPU, with additional logic remaining to implement custom IP block acceler-
ators; the larger capacity UltraScale+ FPGA in the Alveo U280 card can "t multiple DPU instances.

We ran into several technical challenges. First, the DPU does not support the Global Average
Pooling (GAP) and sigmoid layers, shown on the right-hand-side of Figure 3; these layers must
be implemented in software running on one of the Arm CPU cores (UltraScale) or as custom hard-
ware IP block accelerators (Ultrascale or Alveo). Second, implementing the fully connected layer,
which sits between the GAP and sigmoid layers, would entail signi"cant data transfer overhead
between the DPU and the Arm CPU / IP block. Third, the DPU for Ultra96-V2 board uses di#er-
ent con"gurations to perform the convolutional layer (including accumulation and ReLUs); with
space for just one DPU, dynamic recon"guration during inference would be needed to support the
fully connected layer; the alternative, which we adopted, is to implement the fully connected layer
externally on the CPU or as an IP block. This approach worked well for both platforms.

3.4 DPU for Edge Processing
Figure 4 depicts the DPU architecture for Zynq devices. The DPU features user-con"gurable pa-
rameters to optimize resource utilization and to select which features are needed for a given de-
ployment scenario. For example, our implementation does not use softmax, channel augmenta-
tion, or depthwise convolution. Seven DPU variants exist, which di#er in the amount of paral-
lelism provided by the convolution units, with IDs ranging from B512 (smallest, 512 operations per
clock cycle) to B4096 (largest, 4,096 operations per clock cycle); the largest variant that "ts onto
the Ultra96-V2 board is the B2304. The DPU compiler translates a neural network model into a
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Pool or Sigmoid Layers. Newer DPUs support Global Average Pool.



Zynq Implementation
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Fig. 11. The FA-LAMP edge implementation comprises a Zynq UltraScale+ processing system, DPU IP, and
custom HLS kernel; the HLS kernel implements the GAP, fully connected, and sigmoid layers.

High-Performance (HP) ports and two High-Performance Cache coherent (HPC) ports. The
DPU I/O interfaces and HLS kernel connect to the HP ports, which provide lower latency than the
HPC ports; the DPU instruction fetch port connects to an HPC port.

Figure 12 shows the Alveo U280 FPGA con!gured to run the high-throughput DPUCAHX8H
architecture. The host CPU, which pre-processes the input time series, communicates with the
Alveo card via the PCIe bus. The FPGA is partitioned into static and dynamic regions. The static
region is a !xed logic partition that contains the board interface logic and cannot be programmed
by the user. The dynamic region contains memories, memory interfaces, and user kernels compiled
using the Xilinx Vitis compiler. The resources in the dynamic region are further divided into three
Super Logic Regions (SLR0-2). The DPU architecture consists of three DPUCAHX8H instances,
each of which is mapped to a separate logic region. The DPUs in SLR1 and SLR2 are con!gured
with !ve batch engines for maximum parallelism; the DPU in SLR0 contains four batch engines
to leave space for our custom kernel, which implements the GAP, fully connected, and sigmoid
layers, and the AXI switch network and HBM controller to connect the device memory. The switch
network connects to all three DPU instances, providing 7, 7, and 6 HBM AXI ports, respectively,
and provides two additional ports to the custom kernel in SLR0.

4 EXPERIMENTAL SETUP
Figure 13 depicts the LAMP model training process and DPU deployment work"ow; a detailed
explanation follows.

4.1 Model Training
FA-LAMP deployment on an FPGA begins by training the model. We set the number of subse-
quences J to 32 [54], the length of window M to 100, and the stride S to 8. We used the Adam [20]
optimizer to train the model using stochastic gradient descent with a learning rate of 1e-3 and a
batch size of 128. The training objective is to minimize the mean squared error loss between the
predicted and exact MP values for the training dataset. We removed the !rst batch normalization
layer from the LAMP CNN [54]: The Vitis compiler merges each convolutional layer followed by
a batch normalization layer followed by a ReLU layer; a CNN with a batch normalization layer
preceding the !rst convolutional layer caused an error, because the Vitis compiler interpreted the
CNN as consisting of a sequence of batch normalization layers followed by convolutional layers.
Removing the initial convolutional layer was the most straightforward way to rectify the problem.
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Fig. 12. Alveo architecture programmed with the high-throughput DPU.

Fig. 13. Overview of deploying a LAMP model on a DPU.

We trained a LAMP model for each dataset o!ine using the TensorFlow quantization-aware
training API on an Nvidia Tesla P100 GPU. This API improves the accuracy of the model prior to
quantization to INT8, which is performed post hoc by downstream tools (Vitis AI Quantizer in
our case). The model is then calibrated and partitioned in two using Vitis AI: (i) the layers to be
executed on a custom kernel (GAP, fully connected, and sigmoid); and (ii) the rest of the model,
which runs on the DPU. The custom kernel code includes a header that contains the weights and
activations of the fully connected layer for high-level synthesis; the GAP and sigmoid layers do not
feature any trained parameters. The second sub-graph of the model is stored in the h5 format "le.

4.2 Model Inference
4.2.1 DPU Deployment. We use Vitis AI 1.3 to quantize and compile the trained LAMP model.

AI Quantizer converts all of the model weights and activations into a "xed-point INT8 format. The
Xilinx Intermediate Representation (XIR)-based Compiler then maps the model to the DPU
instruction set and data #ow. We speci"ed the custom kernel (fully connected, GAP, and sigmoid
layers) in Vitis HLS using C++ and the ap_fixed<8, 3> data type. We synthesized the custom kernel
using Vivado HLS 2019.2 and integrated the resulting IP block with the DPU using Vitis 2019.2.

We evaluated the LAMP CNNs on a Xilinx Ultra96-V2 development board and Alveo U280
card. Table 1 compares the resources provided by the two platforms. The Alveo card is 30× more
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Global Average Pool (GAP) Kernel

Input: Array of feature maps 𝐷 ∈ ℝ/×& (N: # of channels)
Output: 𝑁-dimensional vector 𝑞 ∈ ℝ& consisting of the average value 
of each feature map.

𝑞1 ←
#
/
∑!"#/ 𝐷!,1 , 1 ≤ 𝑗 ≤ 𝑁



Fully-Connected Layer

Input: Feature vector 𝑞 ∈ ℝ&

Output: Feature vector 𝑧 ∈ ℝ/

𝑧 ← 𝑞𝑊 + 𝑏

Weight Matrix: 𝑊 ∈ ℝ&×/

Bias Vector: 𝑏 ∈ ℝ/
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Fig. 7. Column-wise vector-matrix multiplication tiling scheme.

Fig. 8. Fully connected layer hardware architecture.

possible to increase system parallelism, subject to resource constraints. We setnc = 8 andnr = 4 for
the Ultra96-V2 implementation and set nc = 16 and nr = 16 for the Alveo card in our experiments.

Figure 8 depicts the hardware architecture for the fully connected layer. The design starts by
reading nc elements from the previous layer (GAP) and inserting them into nr FIFOs. During each
iteration, a tile of size nc × nr of the weights is read from the BRAM and is multiplied by the
corresponding vector, which is provided by the GAP layer. The vector is reused until the !nal
column of the weight matrix is processed; then the next nc elements are read from the GAP layer
and the process repeats. The Multiply-Accumulate (MAC) module executes nc × nr parallel
multiplications per clock cycle,3 storing the accumulated sums in a BRAM. The MAC module
outputs a vector of length nr that is added to the bias values stored in a separate BRAM; the
resulting sum is then transmitted to the Sigmoid layer.

(3) Sigmoid Activation: The LAMP CNN applies the sigmoid activation function to each scalar
element of the feature vector z produced by the fully connected layer. To simplify notation, we
present the sigmoid function of a scalar input x that can represent any of the scalars zi ∈ z:

f (x ) =
1

1 + e−x . (3)

Computing the sigmoid function directly on an FPGA is impractical due to the cost of division and
exponentiation. Informed by extensive studies regarding sigmoid approximations [14], we chose

3A single-cycle multiplier is acceptable for our design, because we use an 8-bit !xed-point data format; increasing the
precision or switching to a "oating-point data format may necessitate multi-cycle or pipelined multipliers.
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Note: Bias vector initialized in BRAM



Fully Connected Layer: Architecture
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Fig. 8. Fully connected layer hardware architecture.
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Sigmoid Layer

• Logistic Sigmoid Function: 𝑓 𝑥 = #
#34&'

• Challenges: Exponentiation and Reciprocal (Division) are expensive
• Solution: HW-friendly approximations



Sigmoid Approximations
12:10 A. Kalantar et al.

two variants to evaluate: ultra_fast_sigmoid, a piece-wise approximation used in the Theano li-
brary [5]; and sigm_fastexp_512, which expands the exponential function for an in!nite limit [37].

There are inherent tradeo"s among these approximations in terms of accuracy, throughput/
latency, area, and energy consumption; additionally, their implementation di"ers radically, de-
pending on the chosen precision and whether they are implemented using !xed- or #oating-point
arithmetic.4 A thorough survey of the tradeo"s involved is beyond the scope of this article. The
!nal design, which we evaluate in the following section, uses 8-bit !xed-point arithmetic.

The ultra_fast_sigmoid approximation is de!ned as follows:
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Due to the relative simplicity of the operations compared to directly computing the sigmoid func-
tion, ultra_fast_sigmoid can be implemented as a low-latency kernel.

The sigm_fastexp_512 approximation expands the exponential function in terms of an in!nite
limit (n −→ ∞), using a value of n = 512 to render the approximation computable [37]:

exp(x ) =
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k=1

(
1 + x

k

)k
, n = 512, (5)

sigm(x ) =
1

1 + exp(−x )
. (6)

We implemented our sigmoid layer in HLS using a loop that takes x as an input from the
fully connected layer and approximates the sigmoid using either Equations (4) or (6). In both sce-
narios, we pipelined the loop with an Initiation Interval (II) of 1; the latency of the loop for
sigm_fastexp_512 is higher due to the complexity of the operations.

Figure 9 shows the sigm_fastexp_512 and ultra_fast_sigmoid approximations, along with their
associated errors, de!ned as the squared di"erence between them and an exactly computed sig-
moid function. Neither is uniformly more accurate than the other for all reported values of x , but
ultra_fast_sigmoid has noticeably higher error closer to zero. This error is tolerable for classi!ca-
tion problems [10], where results are normally determined through comparison, not exact values.
The error has a greater impact for regression systems that subsequently process the neural net-
work’s calculated output.

(4) HLS Optimizations: We optimized our design using directives provided by Vivado HLS
and through manual redesign of the fully connected layer. As shown in Figure 10, we achieved a
20× speedup over our baseline implementation, while increasing resource usage by 1.5×:
• Baseline: our starting point design using a 32-bit #oating-point data format.
• Unroll: unrolls the inner loops of the GAP and fully connected layers.

4Alternative implementations, such as logarithmic number systems or Posits, are also possible, but are neither discussed
nor evaluated here.
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Sigmoid Approximations and their Error
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Fig. 9. (a) Approximation functions for sigmoid and (b) their error. Both charts were computed using an 8-bit
fixed-point data type.

Fig. 10. Improvements in custom kernel latency and resource utilization due to HLS optimizations.

• Pipeline: pipelines the outer computation loops and I/O interface loops to infer burst
reads/writes; the three layers execute as a pipeline to maximally overlap computation.
• Fixed-Point: is the design implemented in an 8-bit !xed-point (ap_fixed<8, 3>) data format

that reduces the resource utilization by 3× [13].
• Loop-Tiling-nr tiling the fully connected layer (see Figure 7), while retaining the 8-bit data

format.
The average resource axis in Figure 10 is the average percentage of BRAMs, LUTs, DSP blocks,
and registers used for each design. Most of the speedup arises from pipelining and unrolling loops,
which increases the number of DSP blocks and registers used in a design.

Figure 11 shows the overall design on the Ultra96-V2 board. The HLS kernel implements the
GAP, fully connected, and sigmoid layers while the rest of the neural network runs on the
DPU. The DPU and HLS kernel connect to the processing system via AXI4 ports to allow ac-
cess to the DDR memory space. The Zynq UltraScale+ processing system in our platform has four
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which increases the number of DSP blocks and registers used in a design.

Figure 11 shows the overall design on the Ultra96-V2 board. The HLS kernel implements the
GAP, fully connected, and sigmoid layers while the rest of the neural network runs on the
DPU. The DPU and HLS kernel connect to the processing system via AXI4 ports to allow ac-
cess to the DDR memory space. The Zynq UltraScale+ processing system in our platform has four

ACM Transactions on Recon!gurable Technology and Systems, Vol. 16, No. 1, Article 12. Pub. date: December 2022.



Model Training Flow
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Fig. 12. Alveo architecture programmed with the high-throughput DPU.

Fig. 13. Overview of deploying a LAMP model on a DPU.

We trained a LAMP model for each dataset o!ine using the TensorFlow quantization-aware
training API on an Nvidia Tesla P100 GPU. This API improves the accuracy of the model prior to
quantization to INT8, which is performed post hoc by downstream tools (Vitis AI Quantizer in
our case). The model is then calibrated and partitioned in two using Vitis AI: (i) the layers to be
executed on a custom kernel (GAP, fully connected, and sigmoid); and (ii) the rest of the model,
which runs on the DPU. The custom kernel code includes a header that contains the weights and
activations of the fully connected layer for high-level synthesis; the GAP and sigmoid layers do not
feature any trained parameters. The second sub-graph of the model is stored in the h5 format "le.

4.2 Model Inference
4.2.1 DPU Deployment. We use Vitis AI 1.3 to quantize and compile the trained LAMP model.

AI Quantizer converts all of the model weights and activations into a "xed-point INT8 format. The
Xilinx Intermediate Representation (XIR)-based Compiler then maps the model to the DPU
instruction set and data #ow. We speci"ed the custom kernel (fully connected, GAP, and sigmoid
layers) in Vitis HLS using C++ and the ap_fixed<8, 3> data type. We synthesized the custom kernel
using Vivado HLS 2019.2 and integrated the resulting IP block with the DPU using Vitis 2019.2.

We evaluated the LAMP CNNs on a Xilinx Ultra96-V2 development board and Alveo U280
card. Table 1 compares the resources provided by the two platforms. The Alveo card is 30× more
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Results: Edge Prototype12:18 A. Kalantar et al.

Table 2. Edge Prototype: Throughput (GOPS) and Resource Utilization Comparison between Di!erent
DPU Architectures; (DPU + IP) Uses a B2304 DPU

DPU + Arm DPU + Arm DPU + Arm DPU + Arm DPU + Arm DPU + Arm DPU + IP DPU + IP
(B512) (B800) (B1024) (B1152) (B1600) (B2304) (ultra_fast) (fastexp_512)

Logic Usage 39K (56%) 42K (59%) 46K (65%) 44K (62%) 49K (70%) 52K (75%) 57K (82%) 60K (86%)
Register Usage 50K (36%) 57K (40%) 65K (46%) 64K (45%) 77K (54%) 87K (62%) 95K (67%) 100K (71%)
DSP Usage 78 (21%) 117 (32%) 154 (42%) 164 (45%) 232 (64%) 289 (79%) 290 (80%) 326 (90%)
On-chip RAM Usage 77 (35%) 95 (44%) 109 (50%) 127 (58%) 131 (60%) 171 (79%) 174 (81%) 174 (81%)
Throughput (GOPS) 70.4 107.0 154.2 167.6 220.2 367.1 453.5 428.3
Peak Throughput (GOPS) 153 240 307 345 480 691 691 691

at present, does not lend itself to concurrent execution. The percentage of achievable throughput
ranges from 43.6% to 53.1% for the DPU + Arm con!gurations and jumps to 65.6% and 62.0% for
the two DPU + IP con!gurations. Even if a hypothetical next-generation DPU could support the
three custom kernel operations, the overhead of DPU recon!guration, which we avoided in the
design(s) evaluated here, would also limit the achievable throughput.

DPU resource utilization depends on the degree of parallelism in the chosen con!guration; on-
chip RAM bu"ers the weights, bias, and intermediate features. As DPU I/O channel parallelism
increases, more on-chip RAM is needed to store more intermediate data and more DSP slices are
needed to process that data. When the low DSP usage option is chosen, the DPU uses DSP slices
exclusively for multiplication in the convolution layers and o#oads accumulation to LUTs. This
explains the observed increase in LUT usage as DPU throughput increases.

The custom IP kernels consume additional resources. sigmoid_fastexp_512 performs more mul-
tiplication operations and constant division operations than ultra_fast_sigmoid, noting that the
latter performs mostly constant multiplications. As a consequence, ultra_fast_sigmoid achieves
higher throughput and lower resource utilization compared to sigmoid_fastexp_512; however, as
we will see in the next subsection, these bene!ts come at the cost of lower accuracy.

5.2 Edge: Comparison to a Raspberry Pi 3 and Edge TPU
Next, we compare the performance and energy consumption of FA-LAMP neural network infer-
ence running on the Ultra96-V2 FPGA board to a Raspberry Pi 3 and the Edge TPU device, being
representative of a purely CPU-based edge computing systems.

Table 3 reports the throughput (inference rate), energy consumption (in Joules), and perfor-
mance per power (GOPs/Watt) of processing a single batch of size 128 on each platform. The
runtime of FA-LAMP neural network inference does not depend on the size of the representative
dataset used for training; thus, the inference rate and energy consumption is identical across all
datasets.

Both the inference rate and energy consumption of all three Ultra96-V2 FPGAs improve by
1 order of magnitude compared to the Edge TPU and ∼6× compared to the Raspberry Pi ; ac-
cording to our power measurements, the Ultra96-V2 FPGA board consumed ∼3W of power com-
pared to ∼4W for the Raspberry Pi. We consider the nominal power consumption of 4.5W for
the Edge TPU devices as reported in the datasheet. As expected, the DPU + IP options achieve a
higher inference rate than the reported DPU + Arm con!guration. Notably, the DPU + IP option
using sigmoid_fastexp_512 consumes more energy than both the DPU + Arm and DPU + IP using
ultra_fast_sigmoid; referring back to Table 2, this occurs due to the higher demand for DSP blocks
(36 more than ultra_fast_sigmoid), which are clocked twice as fast as the FPGA general logic. All
of the evaluated edge platforms exhibit comparable power consumption; however, performance
per Watt corresponds, linearly to the inference rate with Ultra96-V2 outperforming the Edge TPU
by 1 order of magnitude and the Raspberry Pi by ∼6×. The Edge TPU has the lowest performance
among all the edge platforms due to its limited RAM capacity and its inability to support batch
processing; we conclude that it is not a good option for streaming applications.
ACM Transactions on Recon!gurable Technology and Systems, Vol. 16, No. 1, Article 12. Pub. date: December 2022.
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Table 3. Edge Prototype: Inference Rate and Energy Consumption of LAMP
Neural Network Inference on an Edge TPU, Raspberry Pi 3,

and Ultra96-V2 Board

Edge Raspberry DPU + DPU + IP DPU + IP
TPU Pi 3 Arm ultra_fast fastexp_512

Inf. Rate (Hz) 824 2.6K 12.1K 15.0K 14.2K
Energy (J) 161.4 58.8 7.2 6.7 9.1
GOPs/Watt 5.8 10.4 107.9 146.1 135.8

Table 4. Cloud Prototype: Throughput, Latency, Inference Rate, and Energy Consumption

GPU Server Desktop LL + CPU LL + IP LL + IP HT + CPU HT + IP HT + IP
CPU CPU (ultra_fast) (fastexp_512) (ultra_fast) (fastexp_512)

Throughput (TOPS) 92.52 69.57 4.91 2.26 3.04 2.53 4.27 5.53 4.83
Latency (ms) 356 227 296 5.68 3.25 3.49 6.29 3.85 4.09
Inference Rate (KHz) 3,079 2,298 163 75 101 84 142 184 160
Energy (J) 118.32 72.20 38.43 9.15 6.81 8.20 4.86 3.75 4.29
GOPs/Watt 1,210 740 68 44 57 46 77 98 89

LL = Alveo Low-latency, HT = Alveo High-throughput.

5.3 Cloud Prototype: Throughput and Energy
Table 4 details the measured performance and energy consumption of FA-LAMP in di!erent sce-
narios.The columns starting with LL and HT report measurements for the low-latency and high-
throughput DPU on the Alveo card. Similar to Table 2, in LL (HT) + CPU columns, the custom ker-
nel (fully connected, GAP, and sigmoid functions) are o"oaded to the CPU, while in LL (HT) + IP
columns the custom kernel is implemented as FPGA kernel that runs on programmable logic. The
FA-LAMP program in all Alveo implementations is multi-threaded to maximize DPU utilization.

Throughput: The server CPU and GPU achieved an order of magnitude higher throughput
than the other systems tested, due to their high core count and parallel processing capabilities;
the desktop CPU achieves comparable performance to the high-throughput DPU con#gurations.
The high-throughput DPU achieves higher throughput than the low-latency DPU. Referring back
to Figures 5 and 6, the high-throughput architecture has three DPUs, each with multiple batch
engines, while the low-latency architecture has two DPUs with a single compute engine and no
local memory pool; the low-latency DPU’s fusion engine improves latency, but not throughput.

Latency: We report the latency on each platform as the inference time for a single input. The
FPGA-based platforms achieved two orders of magnitude lower-latency compared to the two CPUs
and the GPU. The low-latency DPU performs inference approximately 1 ms faster than the high-
throughput DPU, bene#ting from compiler optimizations such as layer fusion, as supported by
its fusion engine (Figure 6). The hardware IP kernel implemented using the ultra_fast_sigmoid ap-
proximation runs around 0.2 ms faster than the sigmoid_fastexp_512 implementation. The FPGA +
CPU systems incur the latency associated with transferring data between the FPGA and the server
CPU, and reprogramming the DPU at runtime to execute the fully connected layer on the FPGA.

Inference Rate: The inference rate is the number of predictions per second, which correlates
to throughput: The GPU and the Server CPU have the highest inference rate, while the inference
rate of the Desktop CPU is comparable to those of the FPGA with high-throughput DPU con#g-
urations. The high-throughput DPU connected to the custom kernel with the ultra_fast_sigmoid
has the highest overall inference rate among all DPU implementations; this results from the
greater arithmetic parallelism provided by the high-throughput DPU compared to the low-latency
DPU.
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Table 3. Edge Prototype: Inference Rate and Energy Consumption of LAMP
Neural Network Inference on an Edge TPU, Raspberry Pi 3,

and Ultra96-V2 Board

Edge Raspberry DPU + DPU + IP DPU + IP
TPU Pi 3 Arm ultra_fast fastexp_512

Inf. Rate (Hz) 824 2.6K 12.1K 15.0K 14.2K
Energy (J) 161.4 58.8 7.2 6.7 9.1
GOPs/Watt 5.8 10.4 107.9 146.1 135.8

Table 4. Cloud Prototype: Throughput, Latency, Inference Rate, and Energy Consumption

GPU Server Desktop LL + CPU LL + IP LL + IP HT + CPU HT + IP HT + IP
CPU CPU (ultra_fast) (fastexp_512) (ultra_fast) (fastexp_512)

Throughput (TOPS) 92.52 69.57 4.91 2.26 3.04 2.53 4.27 5.53 4.83
Latency (ms) 356 227 296 5.68 3.25 3.49 6.29 3.85 4.09
Inference Rate (KHz) 3,079 2,298 163 75 101 84 142 184 160
Energy (J) 118.32 72.20 38.43 9.15 6.81 8.20 4.86 3.75 4.29
GOPs/Watt 1,210 740 68 44 57 46 77 98 89

LL = Alveo Low-latency, HT = Alveo High-throughput.

5.3 Cloud Prototype: Throughput and Energy
Table 4 details the measured performance and energy consumption of FA-LAMP in di!erent sce-
narios.The columns starting with LL and HT report measurements for the low-latency and high-
throughput DPU on the Alveo card. Similar to Table 2, in LL (HT) + CPU columns, the custom ker-
nel (fully connected, GAP, and sigmoid functions) are o"oaded to the CPU, while in LL (HT) + IP
columns the custom kernel is implemented as FPGA kernel that runs on programmable logic. The
FA-LAMP program in all Alveo implementations is multi-threaded to maximize DPU utilization.

Throughput: The server CPU and GPU achieved an order of magnitude higher throughput
than the other systems tested, due to their high core count and parallel processing capabilities;
the desktop CPU achieves comparable performance to the high-throughput DPU con#gurations.
The high-throughput DPU achieves higher throughput than the low-latency DPU. Referring back
to Figures 5 and 6, the high-throughput architecture has three DPUs, each with multiple batch
engines, while the low-latency architecture has two DPUs with a single compute engine and no
local memory pool; the low-latency DPU’s fusion engine improves latency, but not throughput.

Latency: We report the latency on each platform as the inference time for a single input. The
FPGA-based platforms achieved two orders of magnitude lower-latency compared to the two CPUs
and the GPU. The low-latency DPU performs inference approximately 1 ms faster than the high-
throughput DPU, bene#ting from compiler optimizations such as layer fusion, as supported by
its fusion engine (Figure 6). The hardware IP kernel implemented using the ultra_fast_sigmoid ap-
proximation runs around 0.2 ms faster than the sigmoid_fastexp_512 implementation. The FPGA +
CPU systems incur the latency associated with transferring data between the FPGA and the server
CPU, and reprogramming the DPU at runtime to execute the fully connected layer on the FPGA.

Inference Rate: The inference rate is the number of predictions per second, which correlates
to throughput: The GPU and the Server CPU have the highest inference rate, while the inference
rate of the Desktop CPU is comparable to those of the FPGA with high-throughput DPU con#g-
urations. The high-throughput DPU connected to the custom kernel with the ultra_fast_sigmoid
has the highest overall inference rate among all DPU implementations; this results from the
greater arithmetic parallelism provided by the high-throughput DPU compared to the low-latency
DPU.
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Fig. 5. High-throughput DPUCAHX8H architecture, comprising three DPU instances with multiple batch
engines for parallel data processing.

Fig. 6. Low-latency DPUCAHX8L architecture, comprising two DPU instances with one convolution engine,
scheduler, and code FIFO units.

sequence of DPU instructions. After start-up, the DPU fetches these instructions from o!-chip
memory to control the compute engine’s operations. The compute engine employs deep pipelin-
ing and comprises one or more processing elements (PEs), each consisting of multipliers, adders,
and accumulators. DSP blocks can be clocked at twice the frequency of general logic.

The DPU bu!ers input, output, and intermediate values in BRAM to reduce external memory
bandwidth. It directly connects to the Processing System (PS) through the Advanced eXtensi-
ble Interface 4 (AXI4) to transfer data. The host program uses the Xilinx Deep Neural Network
Development Kit (DNNDK) to control the DPU, service interrupts, and coordinate data trans-
fers. In our design, data transfers were necessary, as the "nal three layers of the CNN (GAP, fully
connected, and sigmoid) were performed outside the DPU.

3.5 DPU for Cloud Acceleration
Two di!erent DPU architectures are currently available that support the High Bandwidth
Memory (HBM)2 on the Alveo FPGA card; one is high-throughput (Figure 5) and the other is
low-latency (Figure 6). The Alveo DPUs are named DPUCAHX8, as they are targeted towards
CNN applications (C) for the Alveo platform with HBM (AH) using 8-bit quantization (X8).
The two variants are named DPUCAHX8H (high-throughput) and DPUCAHX8L (low-latency), re-
spectively. Both architectures are provided as device binary "les and cannot be further con"gured.
The high-throughput architecture is con"gured with three DPUCAHX8H DPUs; the low-latency
architecture is con"gured with two DPUCAHX8L DPUs. The DPU compiler for Alveo allows the

2While FA-LAMP is optimized for streaming time series generated by external sensors, we evaluate FA-LAMP by loading
the time series into the HBM and streaming it directly into the FPGA.
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low-latency (Figure 6). The Alveo DPUs are named DPUCAHX8, as they are targeted towards
CNN applications (C) for the Alveo platform with HBM (AH) using 8-bit quantization (X8).
The two variants are named DPUCAHX8H (high-throughput) and DPUCAHX8L (low-latency), re-
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The high-throughput architecture is con"gured with three DPUCAHX8H DPUs; the low-latency
architecture is con"gured with two DPUCAHX8L DPUs. The DPU compiler for Alveo allows the

2While FA-LAMP is optimized for streaming time series generated by external sensors, we evaluate FA-LAMP by loading
the time series into the HBM and streaming it directly into the FPGA.
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Table 5. FA-LAMP Neural Network Inference Accuracy

Time Series Dataset FA-LAMP Inference Accuracy

Name
Train/Test
Split

32-bit
float

edge:
ultra_fast

edge:
fastexp

qa_edge:
ultra_fast

qa_edge:
fastexp

qa_cloud:
ultra_fast

qa_cloud:
fastexp

Earthquake 120M/30M 97.4% 91.4% 92.5% 93.8% 94.7% 94.3% 95.1%
Insect EPG 2.5M/5M 97.2% 90.8% 93.2% 91.9% 94.4% 92.5% 94.8%
Chicken Accel. 6M/2M 95.8% 86.9% 91.1% 89.5% 93.1% 90.2% 93.7%

qa = quantization-aware Training, edge = Ultra96, Cloud = Alveo.

Table 6. Performance Comparison with Other FPGA-based Edge and Cloud DNN
Deployment Frameworks

HLS4ML [11] fpgaConvNet [40] VTA [6] FINN [39] DPU fpgaConvNet [40] FINN [39] DPU
FPGA Platform Ultra96 Ultra96 Ultra96 Ultra96 Ultra96 Alveo U280 Alveo U280 Alveo U280
Precision !x-8 !x-8 int-8 !x-4 int-8 !x-8 mix int-8
DSPs 256 220 186 220 326 451 1,865 2,600
BRAMs 132 164 152 101 174 230 412 628
Throughput 156 GOPS 198 GOPS 101 GOPS 471 GOPS 453 GOPS 2.37 TOPS 6.12 TOPS 5.53 TOPS

Energy Consumption: The Energy row in Table 4 reports the energy consumption of pro-
cessing a single batch of size 128 on each platform. The FPGAs are an order of magnitude more
energy-e"cient than the GPU or CPUs. The lowest overall power consumption was achieved us-
ing the high-throughput DPU and the custom IP kernel with the ultra_fast_sigmoid approxima-
tion, which requires far fewer arithmetic operators than sigm_fastexp_512. In terms of perfor-
mance per Watt, the GPU outperforms all the other platforms while the high-throughput DPU
with sigm_fastexp_512 improves CPU’s performance per Watt by 44%.

5.4 Inference Accuracy
Table 5 summarizes the accuracy of the FA-LAMP neural network models that we evaluated
in the preceding section. Columns starting with the label “edge” present the results from our
previous implementation [18] and columns labeled with “qa_edge” and “qa_cloud” detail the
results obtained using quantization-aware training. We include results for a 32-bit #oating-point
CPU-only implementation of the FA-LAMP models as a baseline to quantify the loss in accuracy
due to quantization, which is 2.1–2.8 percentage points (pp) for sigmoid_fastexp_512, and
3.1–6.3 pp for ultra_fast_sigmoid. The 6.3 pp accuracy loss for the Chicken Accelerometer dataset
for ultra_fast_sigmoid can be attributed to the range of values in the input numbers to the sigmoid
kernel. Referring back to Table 3, we note that sigmoid layer’s input values lie in the range [−0.12
1.85], where ultra_fast_sigmoid has the largest error, when inference is performed on this dataset.

Compared to our previous work [18], the results reported in Table 5 achieved 1.6–2.6 pp im-
provement in sigmoid_fastexp_512 accuracy and 1.7–3.3 pp improvement in ultra_fast_sigmoid,
which are due to the use of quantization-aware training in this study. The di$erences in accuracy
reported for the Ultra96-V2 and Alveo implementations is due to di$erent model compilation #ows
for the two platforms and potential microarchitectural di$erences, noting that neither !xed-point
nor #oating-point addition and multiplication are associative.

5.5 Comparison to Recent CNN-to-FPGA Compilation Frameworks
We deployed our LAMP model on several state-of-the-art FPGA edge-based and cloud-based CNN
frameworks and compared their performance; Table 6 reports the resource utilization and through-
put of each framework.
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Future Work: 
Can we train sigmoid approximations, rather than inserting them after training with the exact sigmoid?
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Fig. 16. The SLR0 in the Alveo card configured with the Ethernet subsystem and the custom kernel IPs.

6 DPU INTEGRATION WITH ETHERNET
In a real world cloud-scale deployment, a plurality of Alveo cards in a server would be connected
through a network switch, allowing them to receive data from external sources. For example, mul-
tiple edge devices may transmit sensor data to the server in real time over the Internet. To address
the needs of such a deployment, this section describes the integration of a high-throughput DPU
with a 100 G Ethernet IP allowing an Alveo-based deployment to receive and process data.

We built our design on top of the Xilinx TCP stack IP repository [46], which comprises an
UltraScale+ Integrated 100 Gb/s Ethernet (CMAC) and a network layer kernel. The CMAC kernel
is connected to the Alveo’s GT pins exposed by the Vitis shell and it runs at the frequency of
a 100 G Ethernet Subsystem clock, i.e., 322 MHz. It exposes two 512-bit AXI4-Stream interfaces
(S_AXIS and M_AXIS) to the user logic, which run at the same frequency as the kernel. Internally
it has clock domain crossing logic to convert from kernel clock to the 100 G Ethernet Subsystem
clock. The network kernel is a collection of HLS IP cores that provide TCP/IP network functionality,
consisting of TCP, ICMP, and ARP modules clocked at 250 MHz. The network kernel exposes AXI4-
Stream interfaces to enable the user kernel to open and close TCP/IP connections and to send and
receive network data.

Figure 16 depicts the Ethernet subsystem and custom kernel IPs implemented in SLR0 in the
Alveo card; due to resource constraints, we had to remove the DPU kernel with four batch engines
in SLR0 to !t the CMAC and network layer kernels. As mentioned in Section 3.6, the DPUCAHX8H
can be con!gured to have multiple batch engines that execute model inference in parallel. Each
batch engine connects to the global HBM memory using an AXI4 memory mapped interface. The
DPU also has an s_axi_control interface, used to start running a task on a DPU core, wait for the
task to !nish, and clear the DPU’s status. Since the network kernel provided by Xilinx has AXI4-
Stream interfaces, we cannot directly connect the kernel to the DPU input ports. One solution
would be to transmit the network data to the host and then to the DPU using the VART API;
however, this would lead to sub-optimal performance.

To address this bottleneck, we added a memory arbiter module to the network kernel that writes
the incoming network data to the memory address used by DPU batch engines. This frees up HBM
memory channels 14–18, which the memory arbiter uses to divide the incoming network data into
equally sized batches and writes the data to memory channels 0-6 for DPU kernel 2 and memory
channels 7–13 for DPU kernel 1. The memory arbiter also provides two memory mapped AXI
master interfaces that connect to the s_axi_control interfaces of the two DPU kernels.
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Fig. 12. Alveo architecture programmed with the high-throughput DPU.

Fig. 13. Overview of deploying a LAMP model on a DPU.

We trained a LAMP model for each dataset o!ine using the TensorFlow quantization-aware
training API on an Nvidia Tesla P100 GPU. This API improves the accuracy of the model prior to
quantization to INT8, which is performed post hoc by downstream tools (Vitis AI Quantizer in
our case). The model is then calibrated and partitioned in two using Vitis AI: (i) the layers to be
executed on a custom kernel (GAP, fully connected, and sigmoid); and (ii) the rest of the model,
which runs on the DPU. The custom kernel code includes a header that contains the weights and
activations of the fully connected layer for high-level synthesis; the GAP and sigmoid layers do not
feature any trained parameters. The second sub-graph of the model is stored in the h5 format "le.

4.2 Model Inference
4.2.1 DPU Deployment. We use Vitis AI 1.3 to quantize and compile the trained LAMP model.

AI Quantizer converts all of the model weights and activations into a "xed-point INT8 format. The
Xilinx Intermediate Representation (XIR)-based Compiler then maps the model to the DPU
instruction set and data #ow. We speci"ed the custom kernel (fully connected, GAP, and sigmoid
layers) in Vitis HLS using C++ and the ap_fixed<8, 3> data type. We synthesized the custom kernel
using Vivado HLS 2019.2 and integrated the resulting IP block with the DPU using Vitis 2019.2.

We evaluated the LAMP CNNs on a Xilinx Ultra96-V2 development board and Alveo U280
card. Table 1 compares the resources provided by the two platforms. The Alveo card is 30× more
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Fig. 17. Ethernet module throughput on the Alveo card as a function of payload size.

After writing the input data to the corresponding addresses of the !ve batch engines for each
DPU, the memory arbiter starts the execution of that DPU kernel by setting the reд_ap_control
register to 1 through the s_axi_control interface. This allows the Alveo card to process incoming
network data without CPU involvement. The memory arbiter waits for DPU’s interrupt before it
signals the start of a new batch.

We tested the DPU integrated with Ethernet system by directly connecting two Alveo U280
cards through their Quad Small Form-factor Pluggable (QSFP) ports. We programmed one of
the Alveo cards as a producer of data, combining the CMAC and network layer kernel with a cus-
tom user TCP kernel. The TCP kernel opens a TCP connection to provide the IP and TCP port of
the destination and to transmit the data over the network. To transmit data, a Tx control hand-
shake is required before each payload transfer. The user kernel !rst transmits the session ID and
the payload size and, upon receiving a positive acknowledgment from the TCP module, transmits
the data. The second Alveo card is programmed as a consumer, with two DPU kernels: CMAC, and
the modi!ed network kernel, which includes the aforementioned memory arbiter module.

To achieve 100 Gbps, we pipelined the control handshake and payload transfer between the user
kernel and the network kernel in the producer FPGA. Since the control handshake is required for
each payload transfer and requires 10 to 30 clock cycles, a sequential control handshake-payload
transfer may stall. To pipeline the process, we established 32 concurrent connections and pinned
them to di"erent threads using the OpenMP API; further increasing the number of concurrent
connections yielded no further improvements in our experiments. Next, we transmitted packets
whose sizes were a positive integer multiple of 64 bytes. The transmission process bu"ers portions
of the payload in the global memory for retransmission in the event that packet loss and/or memory
accesses with unaligned addresses decreases the bandwidth.

Figure 17 shows that the 100 Gigabit QSFP port saturates the available bandwidth at a su#-
ciently large payload size. We achieved a peak throughput of 86 Gbit/s for payloads larger than
4 KiB, which is feasible, because the DPU and our custom kernel can achieve an initiation inter-
val of 1, meaning that no stall cycles occur in the design pipeline. At smaller payloads, the con-
trol handshake required for each payload transfer impedes throughput. To maximize the Ethernet
throughput, optimizations on both the producer and consumer sides are required: In the producer’s
software code, we leveraged concurrent TCP connections to hide the control handshake latency,
and in the consumer’s hardware deployment, we implemented a memory arbiter module to initiate
execution of DPU kernels as soon as network data is received.
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Recap

• FPGAs are highly amenable to streaming applications
• Offline time series algorithms often need significant modifications to 

work in a streaming context
• Using a neural network to predict the output of an offline algorithm is 

one of many possible approaches to convert offline to streaming
• Simpler approaches may make smaller-scale modifications, such as replacing 

offline normalization with streaming normalization

• Think about context: is a given streaming application better deployed 
in the cloud or in the edge?



Future Directions

• Can the catch-22 features be computed in a streaming fashion?
• What can be done with streaming catch-22 features once they are 

computed?
• This tutorial: combine with the Matrix Profile
• Immediate Thought: does it make sense to predict the catch-22 features in a 

manner similar to LAMP?
• Future Work: Real-time machine learning using catch-22?

• What type of machine learning models? (Neural nets? Something else?)
• Can we detect concept drift in streaming data from catch-22 observations?
• When concept drift occurs can we incrementally retrain our model(s) to compensate?



Numerical Precision Challenges

• Most papers on time series (offline or online) assume 32-bit floats or 
64-bit doubles
• If you use a neural network you can train with other formats (e.g., 

bfloat) and quantize down to fixed-point
• Many numerical stability problems exist for very large time series 

(e.g., billions of datapoints) for both online and offline algorithms
• e.g., see Rakthanmanon et al., KDD 2012 for online normalization
• Many downstream implications for online algorithms that process an online-

normalized time series



Approximate Arithmetic Opportunities

• Benefits: smaller, faster, more energy-efficient than exact arithmetic 
operators
• Challenges: arithmetic operators will be incorrect for some input bit 

combinations
• Key questions: 

• Does approximate arithmetic impact Matrix Profile computation?
• Does approximate arithmetic impact catch-22 feature computation? 
• Does approximate arithmetic impact the conclusions that can be drawn? 
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