
OFS on Intel Stratix 10
John Tio
Application Engineer

FCCM 2023

FCCM 2023 2

Agenda

▪ Overview

▪ BMC

▪ FIM

▪ OPAE-SDK

▪ OFS Development

▪ AFU Development

▪ AFU Simulation Environment

▪ Summary

FCCM 2023 3

What is OFS?

OFS Value Propositions:

• Scalable, source-accessible hardware and software framework delivered through Git
repositories

• Reduce development time with modular and composable source code used as-is or
easily customized

• Upstreamed Linux kernel drivers are being adopted by leading OS and orchestration
vendors

• Maximize ROI for workload developers with standard hardware and software
interfaces and by deploying across multiple OFS-based platforms

• Growing ecosystem of OFS-enabled boards, workloads, and OS distributions

OFS is a software and hardware infrastructure providing an efficient path
to develop a custom FPGA-based platform or workload using an Intel, 3rd

party, or custom board.

FCCM 2023 4

OFS Deliverables

Hardware

▪ Acceleration Functional Unit (AFU) Region for Workload
Development with Sample AFUs

▪ FPGA Interface Manager (FIM)

▪ Board Management Controller (BMC)

▪ HLD enablement

Software

▪ Upstreamed, open-source kernel drivers

▪ OPAE libraries, tools and APIs

▪ Example Applications

Verification Environment

▪ UVM Verification environment provided through Git
repositories

FCCM 2023 5

Software Developer

▪ Utilize open-sourced and
upstreamed kernel drivers and
user space

▪ Flexibility to target OS
distributions of choice *or*

▪ Native support from leading
vendor OS distributions

Hardware/Board Developer

▪ Leverage source-accessible,
modular RTL source code

▪ Easily modify or use as-is in the
provided framework to save
development time

Application Developer

▪ Develop applications in RTL or
HLD (OpenCL/oneAPI) for
increased portability and ROI
across OFS-based platforms

▪ Leverage a growing ecosystem
of OFS-based platforms from
Intel and third-parties

Developer Benefits

FCCM 2023 6

OFS Enables Scale and Deployment

Intel & Workload
Partners

Orchestration / Rack Level
Management

Accelerator Simulation

Hardware

Data center / IT
Administrator

User Developed Host Application

Software
Application
Developer

OPAE API, Intel SW Libraries,
HLD Libraries

IT Administrator

HLD Accelerator Design

Intel supplied IP

Evaluation Platforms

BMC RTL/FW

FPGA Interface Manager Source
Code & Simulation Env.

Basic Building Blocks &
Primitives

Server Operating System

Accelerator Design via RTL

Software Frameworks (DPDK)

Scalable infrastructure
▪ Addressing needs of board, software and application developers

▪ Source-accessible hardware and software code for BMC, FIM and related IP blocks

Customize your platform
▪ Modular and composable source code

▪ Take and tailor Intel supplied IP to meet platform needs

Adoption of upstreamed kernel code
▪ Leading OS and orchestration vendor support

Growing ecosystem
▪ Intel® Open FPGA Stack-based boards from Intel and third parties

▪ Portable RTL and HLD-based accelerator workloads

▪ Flexibility for OS distributions and orchestration frameworks

OFS Deliverable

Intel or Third Party

Third Party

FCCM 2023 7

Intel Stratix 10: D5005 Programmable
Acceleration Platform (PAC)

OFS Reference Platforms
Leverage hardware reference platforms as a starting point for evaluating OFS

Agilex:N600x Acceleration
Development Platform (ADP)

FCCM 2023 8

Open-Source Development Methodology

• Source-accessible hardware code for Stratix
10 and Agilex delivered to community
through Git repositories

• Hardware source code access must be
requested through an Intel representative

• Working towards a fully open-sourced model
incorporating code contributions

• Intel Stratix 10 code (https://github.com/OFS) is
available today in Github

• Open-source software code
(https://github.com/OPAE) is available today
on Github

• Kernel drivers are currently being upstreamed
to kernel.org with patches

5.9k+
Member

Community

22
Repositories

Latest
Technical

Documentation

Otcshare

https://github.com/OFS
https://github.com/OPAE

FCCM 2023 9

Software Collaboration Model

Intel Programmable
Solutions Group

• Creates/maintains OFS Software
• Upstream drivers to kernel.org
• Provides User space tools
• Pull forward with latest kernel
• Creates base HLD Board Support

Package (BSP)
• Provides validation environment

Software Distribution Vendor
• Incorporates OFS in kernel/user space
• Collaborates with hardware platform provider
• Integrates hardware support into

distribution(s)

Hardware Developer
• Creates hardware platform
• Tunes HLD BSP for specific applications

Provides User space tools
& upstreams drivers

Provides Base HLD BSP &
validation environment

End Customer

Native
software support

Customized platform

Collaboration

FCCM 2023 10

Develop HLD Applications using OpenCL & oneAPI

▪ OFS HLD Shim enables compilation/running of OpenCL
kernels on OFS platforms

▪ Compatible with existing high-performance languages

▪ Leverage familiar programming languages to improve ramp-
up and debug time

▪ OpenCL & oneAPI development on OFS enables portability
across architectures and board vendors

XPUs

FCCM 2023 11

OFS Base FIMs
Leverage the base FIM as-is or modify it to reduce development time

Key Feature Stratix 10 Reference FIM Agilex Reference FIM

FPGA Intel® Stratix® 10 SX FPGA Intel® Agilex™ FPGA

Processor Device contains HPS with Arm® but is
not pinned out on card

HPS with Arm® Cortex A-53

Ethernet
Configuration

1x10 GbE 2x4x25 GbE

PCIe Gen 3x16 Gen 4x16

EMIF Up to 4 DDR4 channels Up to 4 DDR4 channels and 1 HPS
Channel: 1 x40, 2GB

PF/VF 1 PF / 3 VFs 5 PFs / 4 VFs

Management FPGA Management Engine (FME) with FIM management registers

Interface AXI4

HLD Support oneAPI*

Board
Management
Controller

MAX 10 BMC New, Enhanced MAX 10 BMC
Architecture

UVM UVM Support for FIM and AFU

Software Kernel code upstreamed to Linux

Stratix 10 FIM

Agilex FIM

FCCM 2023 12

AFU Development

 PMCI Cntlr

PTP Subsystem

HSSI SS

HIA

Board Peripheral Fabric
(AXI4_lite)

ASA (strm)

Tile

PFA

Xeon Host / SoC

IOFS SW Lib

IOFS Applications

PCIe Host Interface Driver

AFU

P
FA

PF
(IOFS)

PFs, VFs
(Application)

HSSI Tile

100GbE

RBT Connector

RMII I/F

Motherboard BMC

Redfish/PLDM

PCIe Slot x16

PCIe x8SMBUS

Max10
Card BMC

Flash

GPIO

VRs

Fans

Q
SF

P
 C

o
n

tr
o

lle
r

QSFP 0

I2
C

 M
st

r

Po
lle

r
Sh

ad
ow

C

SR
s

Q
SF

P
 G

P
IO

 C
o

n
tr

o
l

Q
SF

P
 G

P
IO

 S
ta

tu
s

PFA

Q
SF

P
 C

o
n

tr
o

lle
r

QSFP 1
I2

C
 M

st
r

P
o

lle
r

Sh
ad

o
w

C

SR
s

Q
SF

P
 G

P
IO

 C
on

tr
o

l

Q
SF

P
 G

P
IO

 S
ta

tu
s

PFA

HSSI IF
module

CSR, Dynamic Reconfig
Controller

(NIOS)

Tx/Rx Pkt
Filter

MCTP
Mgmt

inteface

M
gm

t
P

kt
s

A
FU

 P
kt

s

HE-HSSI

Merlin Mux AVL ST (PF/VF - mux/demux) (upto 32-64 ports)

PTP Pkt IF

~1K wires

HPS

Network Clock synchronizer Chip

I2C

PTP
Controller

SIP
PTP

Serdes

PTP Clks
(1PPS clk,
ToD Clk)

PTP Stack
FW

100GbE

Intr Cntlr

NIOS
Cluster

Memory
Subsystem

AXI-MM

FME C
S
R

PFA

RSTP Therm

Pwr

RAS

FM
E

Fa
b

ri
c

(o
p

ti
o

n
al

)

CSR

CSR

CSR

CSR

PRCSR

SPI
M/S

FilterAVST x8JTAG

Flash
Cntlr

SDM IF ControllerSDM Mbx

SDM

Q
SP

I

A
V

ST
 x

8

JT
A

G

CVL

CVL Driver, SW

AXI-S

M

S

100GbE
PCIe x8
(no connection to FPGA)

100GbE SyncE I/F
(Recovered Clk,
QSFP_Ref_Clk,

CLV_Ref_Clk

G
P

IO

G
P

IO

I2
C

G
P

IO

G
P

IO

I2
C

AXI-MM

AXI-MM

DDR 8GB

DDR 8GB

Eg. Virtio Drvr

User App

PMCI Cntlr : is the

component defined as the

 Network Controller in the

PMCI spec

M
em

 S
S

IF EM
IF

EM
IF

E
M

IF

RMII I/F SMBUSSPI

CSR

PFA

NCSI RMII
MAC

SMBUS Cntlr

Pass
Through

NCSI Cmd
Rsp

MCTP over
SMBUS

MCTP over PCIe

Packet
pipliene

SPI
M/S

NIOS

Perf/Debug
CSRs

SEP (optoinal)
(Cfg space for all EPs)

PCIe G3 x4

HE-Mem

PR Gasket

PF2 PF1-
VF2

A
FU

 P
er

ip
h

er
al

 F
ab

ri
c

(A
X

I4
-L

it
e)

HPS SS

P
FA

P
FA

IPMI

SMBUS

SMBUS

PF3
(Virtio)

Virtio
internal

Loopback

PF3

CCU

A53 Cores

SRAM

L3
Translation
Cntrl Unit

FPGA to HPS Bridge

EMAC (0-2)
ETR, USB,
SD/MMC,

NAND
DMA

AXI to AVL

HPS DFH+CSRs

PIO block,
Copy engine

(DMA)

SD/MMC

HIA I/F
(MMIO only)P

FA

PF0

PR Slot

HE-LB

PF1-
VF1

HE-LB

PF1-
VF0

NIOS RAM

I2C?

SEP
CSRs

D
F
H

D
F
H

HE-DFH

DFH

DFH

PF0 DFHPF
A

DFH

PF4

AXI4-Lite

AXI Streaming

DDR 1GB
(only for
non-HPS
useages)

DDR 1GB
AVMM

Platform Mgmt
Subsystem

(PMCI)

Host I/F
Subsystem

(PCIe)

HPS
Subsystem

EMIF
Subsyst

em

Ethernet
Subsystem

QSFP
Subsystem

FPGA Mgmt
Subsystem

AFU Subsystem
(customer
solution)

Interconnect Subsystem

Developed by Intel
World’s Greatest Solution

(Intel provides sim+build scripts)

• Focused on the algorithm

• Can be PR

• Scripts provided for SW/HW
co-simulation and synthesis

• Uses PR Template generated
by FIM build script

• Developer specifies
environment variable to
point to required FIM qdb
files

FCCM 2023 13

Repository Folder
Repository Folder Description Hardware or Software Repository

linux-dfl This repository is a mirror of the linux.org Git site and contains the most up-to-date drivers that
are being developed and upstreamed for OFS platforms.

Software

opae-sdk Contains the ingredients to build the OFS Open Programmable Acceleration Engine (OPAE)
Software Development Kit which provides APIs and userspace tools for OFS FPGA management.

Software

ofs.github.io Contains the hardware and software collateral that surfaces on the OFS website:
https://ofs.github.io

Markdown/HTML

ofs-d5005 Provides RTL, unit tests, and build scripts to create Intel Stratix 10 FIM and is leveraged as a
starting point for a custom design. The reference FIM targets an Intel FPGA PAC D5005
development board.

Hardware

ofs-fim-common Provides RTL components that are shared among all new platforms that are introduced in OFS.
This folder is a subumodule in each platform repository folder.

Hardware

ofs-platform-afu-bbb Contains the hardware and software code used to build the host interface for the FIM and
provides test examples.

Hardware/Software

linux-dfl-backport A place for finding and leveraging out-of-tree backported drivers for older OS versions . Software

examples-afu Provides standard AFU examples you can use as a template for starting your own workload
design.

Software

opae-legacy Supports OFS platforms built on the legacy version of OPAE software. Not used in
current OFS designs

Software

opae-sim This repository is used to build the AFU Hardware/Software Co-Simulation Environment
workload developers can use to ensure their AFU can work with the OFS software stack.

Hardrware/Software

OFS-BMC

FCCM 2023 15

Overview

▪ An Intel® MAX® 10 FPGA contains the Board
Management Controller (BMC) for the Intel FPGA
Programmable Acceleration Card D5005.

▪ The BMC acts as Root of Trust (RoT) on the Intel® FPGA
PAC D5005.

▪ The Intel® FPGA PAC D5005 BMC supports features

• Power sequence management

• Board monitoring through sensors.

• Secure remote system update for Nios firmware, Intel® MAX®
10 image and FPGA Interface Manager (FIM) image updates.

FCCM 2023 16

Root of Trust (RoT)

The Intel® MAX® 10 BMC acts as a Root of Trust (RoT) and
enables the secure remote system update feature of the Intel®
FPGA PAC D5005. The RoT includes features that may help
prevent the following:

- Loading unauthorized bitstreams.

- Disruptive operations attempted by unprivileged software,
privileged software, or the host BMC.

- Unintended execution of older designs with known bugs or
vulnerabilities by enabling the BMC to revoke authorization.

The Intel® FPGA PAC D5005 BMC also enforces several other
security policies relating to access through various interfaces,
as well as protecting the on-board flash through write rate
limitation.

FCCM 2023 17

Power Sequence Management

▪ The BMC Power sequencer state machine is used to
manage programmable acceleration card power-on and
power-off sequences, to handle different corner cases
during power-on process or normal operation.

▪ Intel® MAX® 10 power-up flow covers the entire process
including Intel® MAX® 10 boot-up, Nios® II boot-up, and
power sequence management for FPGA configuration.

▪ The host needs to check the build versions of both Intel®
MAX® 10 and FPGA, and the Nios® II status every time
after a power-cycle, and then takes corresponding
actions in case the Intel® FPGA PAC D5005 runs into
corner cases such as a Intel® MAX® 10/FPGA factory
build load failure or Nios® II boot up failure.

FCCM 2023 18

Board Monitoring through Sensor

▪ The Intel® MAX® 10 BMC monitors voltage, current and
temperature of various components on the Intel® FPGA
PAC D5005.

▪ Host BMC can access the telemetry data through PCIe
SMBus.

▪ The PCIe SMBus between the host BMC and Intel® FPGA
PAC D5005 Intel® MAX® 10 BMC is shared by both:

• PLDM over MCTP SMBus endpoint

• I2C slave to Avalon-MM interface (read-only).

FCCM 2023 19

Secure Remote System Update

▪ The Intel® FPGA PAC D5005 provides a mechanism to securely update Nios® II firmware, Intel® MAX® 10 image, or
Intel® Stratix® 10 FPGA image over PCIe interface from the host called Remote System Update (RSU). RSU can be
used for the following three updates:

• Intel MAX 10 image update

• Nios® II firmware image update

• FPGA Interface Manager (FIM) image update

▪ The Nios® II firmware is in charge of authenticating the image during the update process. The updates are pushed
over the PCIe interface to the Intel® Stratix® 10 SX FPGA, which in turn writes to the Intel® Stratix® 10 FPGA SPI
master and finally to the Intel® MAX® 10 FPGA SPI slave. A temporary flash area called staging area stores any type
of authentication bitstream through SPI interface.

▪ BMC RoT contains the cryptographic module which implements SHA2-256 bit Hash verification function to
authenticate the keys and ECDSA-256P-256 signature verification to authenticate your AFU.

▪ Nios® II Firmware uses the cryptographic module to authenticate the user signed image in the staging area, if
authentication passes, Nios® II Firmware copies the user image to user flash area. If the authentication fails Nios® II
Firmware reports an error.

FCCM 2023 20

Remote System Upgrade Flow

OFS-FIM

FCCM 2023 22

OFS Features

• FPGA Interface Manager (FIM)

• PCIe Subsystem

• HSSI Subsystem

• Memory Subsystem

• Reset Controller

• FPGA Management Engine

• AFU Peripheral Fabric for AFU accesses to other
interface peripherals

• Board Peripheral Fabric for master to slave CSR
accesses from Host or AFU

• SPI Interface to BMC controller

• Accelerator Functional Unit (AFU)

• Custom workloads and contains both static and
partial reconfiguration regions.

FCCM 2023 23

OFS Features table
Key Feature Description

PCIe H-tile PCIe Gen3x16 Interface

Memory Two Avalon Memory Mapped channels provided as default with capability to compile design with four
channels support.

HSSI 1 Arm* AMBA* 4 AXI4-Stream channel of 10G Ethernet, using the low latency Ethernet 10G MAC Intel FPGA
IP interfacing to an E-tile PHY.

Manageability SPI interface to Board Management Controller targeting Intel FPGA PAC D5005

CoreFIM Flexible configuration support using Arm* AMBA* 4 AXI4-Stream Physical Function/Virtual Function (PF/VF)
Demux/Mux and AFU Peripheral Fabric (APF) and Board Peripheral (BPF) Fabric Interconnects.

Physical Function/Virtual 1 PF/3VF configuration is provided as an example but the architecture now supports full virtualization with
the ability to expand to whatever the PCIe tile supports.

Partial Reconfiguration 1 Partial Reconfiguration region supported in hardware and software

Sample test PR AFUs Host exerciser modules provided to exercise interfaces. These modules are provided in both the flat and PR
AFU examples.

OneAPI Yes

Software Support OFS software stack with support for full virtualization.

FCCM 2023 24

FPGA MANAGEMENT ENGINE (FME)
The FIM contains only one FME, regardless of the number of host interfaces to
the FIM. The FME provides management features for the platform and
controls reset and loading of the AFU into the partial reconfiguration region of
the FPGA.

Each FME feature exposes its capability to host software drivers through a
device feature header (DFH) register found at the beginning of its control
status register (CSR) space. The FME CSR maps to physical function 0 (PF0)
Base address register 0 (BAR0) so that software can access it through a single
PCIe link. For more information about DFHs, refer to the [Device Feature
Header (DFH) structure].

▪ STREAMING DATAPATH

• The FIM implements an AXI4-Stream bus protocol for data transfer in the FIM. AXI4-
Stream channels send data packets to and from the host channel IP without data
abstraction. Memory-mapped I/O (MMIO) CSR accesses are routed to the ST2MM
module which converts the AXI4-Stream to an AXI4 memory mapped protocol.

▪ VIRTUALIZATION

• This design supports virtualization by making use of the virtualization functionality
in the PCIe Hard IP and mapping packets to the appropriate physical or virtual
function through a PF/VF multiplexer. This reference FIM supports 1 PF and 3 VFs as
an example; however, you may extend your configuration to whatever the PCIe Hard
IP can support or what your application requires.

FCCM 2023 25

Accelerator Functional Unit (AFU)

▪ An AFU is an acceleration workload that interfaces to the
FIM.

▪ The AFU boundary in this design comprises both static and
partial reconfiguration (PR) regions. You can compile your
design in one of the following ways:

• Your entire AFU resides in a partial reconfiguration region
of the FPGA

• The AFU is part of the static region and is compiled a flat
design

FCCM 2023 26

Platform Interface Manager

▪ The PIM provides a way to abstract the AXI4-Stream
interface to the AFU by providing a library of shims that
convert the host channel native packet into other
protocols such as

• CCI-P

• AXI4 memory-mapped

• Avalon® streaming (Avalon-ST)

• Avalon® memory-mapped (Avalon-MM).

▪ If you expose the raw AXI4-Stream interface of the FIM,
workload developers also have the option to convert to a
desired protocol using the PIM resources as well.

FCCM 2023 27

FIM Simulation

OFS provides a UVM environment for the FIM and a framework for new feature verification. UVM provides a modular,
reusable, and scalable testbench structure by providing an API framework that can be deployed across multiple
projects. The FIM testbench is UVM compliant and integrates third-party verification IPs from Synopsys that require
license to use. Verification components include:

• FIM monitor to detect correct design behavior

• FIM assertions for signal level integrity testing

• Arm AMBA AXI4 scoreboards to check data integrity

• FIM coverage to collect functional data

FCCM 2023 28

OFS Datapath

OFS provides distinct datapaths that simplifies the design and integration process for add or for removing interface
modules:

• High Bandwidth datapath for AFU-attached high performance peripherals (HSSI, Memory, HPS, workload).

• Low Bandwidth datapath for OFS management and slow peripheral components (JTAG, I2C, SMBus).

• AFU Peripheral Fabric (APF) to Board Peripheral Fabric (BPF) path to communicate with interface control and status
registers (CSRs) and board components.

• Peer-to-peer datapath between AFU components.

• Peer-to-peer datapath between BPF components.

Depending on your design goals, you can present peripherals to software as:

• OFS managed peripherals with a device feature header that is part of a device feature list.

• Native driver managed peripherals that are exposed through an independent physical function or virtual function.

FCCM 2023 29

OFS Datapath

OPAE-SDK

FCCM 2023 31

OFS Software Stack Components

The OFS software stack (OPAE) is the lowest level of software
that manages the FPGA card. Higher level software
(OpenCL/oneAPI) can be built on top of OFS.

▪ Components—open source on Git

• libOPAE (user-space library)

• OPAE FPGA applications and tools (e.g. fpgainfo, fpgaconf,
fpgasupdate, etc.)

• AFU Simulation environment (ASE)

• DFL Linux Kernel Driver OPAE code is completely open source
at: http://github.com/OFS/opae-sdk

FCCM 2023 32

Open Programmable Acceleration Engine (OPAE)
OPAE is a collection of APIs, libraries, and tools to provide FPGA abstraction

OPAE C library (C API)

Enumeration

Intel® FPGA drivers

FME
platform driver

PORT/AFU
platform driver

FPGA PCIe driver

User application, frameworks, libraries

Linux fpga
manager/bridge/region

Intel® FPGA hardware

User-space

Kernel-space

Hardware

ASE
(AFU Simulation)

SW Tools

Access Management

sysfs /dev/intel-fpga-fme.* /dev/intel-fpga-port.*

fpgasupdate

fpgaconf

fpgainfo

host_exerciser
PACSign

bitstreaminfo

packagerfpgaport

O
F

S

FCCM 2023 33

Device Feature List (DFL)

• The DFL is a Linked list of Device Feature Headers (DFH)

• DFL framework abstracts low layer hardware details and provides a unified interface to
userspace

• DFL Linux Driver “walks” the DFL attaching/binding software to enumerate each FPGA feature

• DFL driver source code available at: github.com/OPAE/linux-dfl

• In the process of being upstreamed to kernel.org

OFS uses a DFL structure to describe FPGA contents to software

FCCM 2023 34

OPAE Tools Sample

OPAE Tool Description

fpgaconf Configures the FPGA with the accelerator function (AF). It also checks the AF for compatibility
with the targeted FPGA and the FPGA Interface Manager (FIM).

fpgasupdate Implements a secure firmware for FPGA or BMC

fpgainfo Displays FPGA information derived from sysfs files

rsu Allows the user to preform a remote system update (RSU) operation on a PAC device given
its PCIe address

PACSign Inserts authentication markers into bitstreams targeted for the Intel FPGA PAC D5005

bitstreaminfo Displays authentication information contained with each provided FPGA bitstream binary file

hssi Provides a means of interacting with the 10G HE-HSSI

opae.io Provides user space access to PCIe devices via the vfio-pci driver

…and many more

FCCM 2023 35

fpgasupdate

▪ The fpgasupdate tool updates the Intel Max10 BMC image and firmware, root entry hash, and FPGA Static Region (SR)
and user image (PR). The fpgasupdate will only accept images that have been formatted using PACsign. If a root entry
hash has been programmed onto the board, then the image will also need to be signed using the correct keys.

▪ The Intel FPGA PAC ships with a factory and user programmed image for both the FIM and BMC FW and RTL on all
cards.

▪ fpgasupdate [--log-level=<level>] file [bdf]

args (optional) Description

--log-level Specifies the log-level which is the level of information output to your command tool. The following seven levels are
available: state, ioctl, debug, info, warning, error, critical. Setting --log-level=state provides the most verbose output.
Setting --log-level=ioctl provides the second most information, and so on. The default level is info.

file Specifies the secure update firmware file to be programmed. This file may be to program a static region (SR),
programmable region (PR), root entry hash, key cancellation, or other device-specific firmware.

bdf The PCIe address of the PAC to program. bdf is of the form [ssss:]bb:dd:f, corresponding to PCIe segment, bus, device,
function. The segment is optional. If you do not specify a segment, the segment defaults to 0000. If the system has
only one PAC you can omit the bdf and let fpgasupdate determine the address automatically.

FCCM 2023 36

fpgainfo

▪ fpgainfo [-h] [-S] [-B] [-D] [-F] [PCI_ADDR] {errors,power,temp,fme,port,bmc,mac,phy,security}

Command args (optional) Description

--help, -h Prints help information and exits.

--version, -v Prints version information and exits.

--segment, -S PCIe segment number of resource.

--bus, -B PCIe bus number of resource

--device, -D PCIe device number of resource.

--function, -F PCIe function number of resource.

errors {fme, port, all} --clear, -c First agument to the errors command specifies the resource type to display in human readable
format. The second optional argument clears errors for the given FPGA resource.

power Provides total power in watts that the FPGA hardware consumes

temp Provides FPGA temperature values in degrees Celsius

port Provides information about the port

fme Provides information about the FME

bmc Provides BMC sensors information

mac Provides information about MAC ROM connected to FPGA

security Provides information about the security keys, hashes, and flash count, if available.

FCCM 2023 37

rsu

▪ Performed remote system update operation on a device, given its PCIe address. A rsu operation sends an instruction
to the device to trigger a power cycle of the card only. This will force reconfiguration from flash for either the BMC or
FPGA.

▪ The Intel FPGA PAC contains a region of flash the user may store their FIM image. After an image has been
programmed with fpgasupdate the user may choose to perform rsu to update the image on the device.

▪ bash session

• rsu [-h] [-d] {bmc,bmcimg,retimer,sdm,fpgadefault} [PCIE_ADDR]

FCCM 2023 38

Opae.io

▪ Opae.io is an interactive Python environment which provides user space access to PCIe devices via vfio-
pci driver.

▪ The main features of opae.io is its build-in Python command interpreter that provide a means to access
Configuration and Status Registers (CSRs) that reside on the PCIe device

▪ Opae.io has 2 operating modes

• Command line

• Interactive mode

FCCM 2023 39

Opae.io example

▪ Opae.io ls [-v, --viddid VID:DID]

• List each accelerator device along with the PCIe address, PCIe vendor/device ID, brief description and the driver to
which the currently is bound

▪ Opae.io init [-d PCI_ADDR USER:[GROUP]]

• Unbinds the specific device from its current driver and binds it to vfio-pci

▪ Opae.io release [-d PCI_ADDR]

• Release the device form vfio-pci

▪ Opae.op walk [-d PCI_ADDR] [-r REGION] [OFFSET] [-u, --show-uuid]

• Traverses and display the Device Features List of the given region

▪ Opae.io peek [-d PCI_ADDR] [-r REGION] OFFSET

• Options reads and displays a CSR value

▪ Opae.io poke [-d PCI_ADDR [-r REGION] OFFSET VALUE

• Writes a given value to a CSR

OFS Development Guide

FCCM 2023 41

Stratix 10 Architecture

FCCM 2023 42

Pre-requisites

OFS is an advanced application of FPGA technology. This guide assumes you have the following FPGA logic
design-related knowledge and skills:

▪ FPGA compilation flows using Intel® Quartus® Prime Pro Edition design flow.

▪ Static Timing closure, including familiarity with the Timing Analyzer tool in Intel® Quartus® Prime Pro
Edition, applying timing constraints, Synopsys* Design Constraints (.sdc) language and Tcl scripting, and
design methods to close on timing critical paths.

▪ RTL and coding practices for FPGA implementation.

▪ RTL simulation tools.

▪ Intel® Quartus® Prime Pro Edition Signal Tap Logic Analyzer tool software.

FCCM 2023

FCCM 2023 43

Development Environment

Item Version

Intel Quartus Prime Pro Intel Quartus Prime Pro 22.3 (with license patch)

Target D5005 Sever Operating System RHEL 8.2

OPAE SDK 2.3.0-1

Linux DFL ofs-2022.3-2

Python 3.7.7

cmake 3.11.4

GCC 7.2.0

perl 5.8.8

FCCM 2023

https://github.com/OFS/opae-sdk/releases/tag/2.3.0-1
https://github.com/OFS/linux-dfl/releases/tag/ofs-2022.3-2

FCCM 2023 44

Reference Board FIM

•Host interface

•PCIe Gen3 x 16

•2 - QSFP28 cages

•Current FIM supports 1 x 10 GbE, other
interfaces can be created

•External Memory

•2 or 4 channels of DDR4-2400 to RDIMM
modules

•RDIMM modules = 8GB organized as 1 Gb X 72

•Board Management

•SPI interface

•FPGA configuration

FCCM 2023 45

FIM FPGA Resource Usage
Summary FPGA Resource Utilization

Logic utilization (in ALMs) 124,092 / 933,120 (13 %)

Total dedicated logic
registers

282822

Total pins 630 / 912 (69 %)

Total block memory bits 3,425,120 / 240,046,080 (1
%)

Total RAM Blocks 661 / 11,721 (6 %)

Total DSP Blocks 0 / 5,760 (0 %)

Total eSRAMs 0 / 75 (0 %)

Total HSSI P-Tiles 17 / 48 (35 %)

Total HSSI E-Tile Channels 17 / 48 (35 %)

Total HSSI HPS 0 / 1 (0 %)

Total HSSI EHIPs 0 / 2 (0 %)

Total PLLs 36 / 104 (35 %)

FCCM 2023

FCCM 2023 46

OFS Contents
Eval Script Contains scripts for evaluation of OFS for D5005 including compiling FIM/AFU from source, unit level test.

Also includes resources to report and setup D5005 development environment

ipss Contains the code and supporting files that define or set up the IP subsystems (HSSI, PCIe, memory, PMCI,
SPI, etc...) contained in the D5005 FPGA Interface Manager (FIM).

License License file for the Low Latency 10Gbps Ethernet MAC (6AF7 0119) IP core.

ofs-common This directory contains resources that may be used across the board-specific repositories. This directory is
referenced via a link within each of the FPGA-specific repositories.

Sim Contains the testbenches and supporting code for all the unit test simulations.

Bus Functional Model code is contained here.

Scripts are included for automating a myriad of tasks.

All of the individual unit tests and their supporting code is also located here.

Src SystemVerilog source and script files

Contains all of the structural and behavioral code for the FIM.

Scripts for generating the AXI buses for module interconnect.

Top-level RTL for synthesis is located in this directory.

Accelerated Functional Unit (AFU) infrastructure code is contained in this directory.

Syn This directory contains all of the scripts, settings, and setup files for running synthesis on the FIM.

FCCM 2023 47

Linux OS package requirement

▪ RHEL 8.2 Library needed

• sudo dnf install libnsl sudo dnf install ncurses-compat-libs

• sudo ln -s /usr/bin/python3 /usr/bin/python

FCCM 2023 48

OFS Installation

▪ Install Quartus Prime Pro 22.3 Linux and setup environment

▪ Clone the github `ofs-d5005` repository

• mkdir OFS_fim_build_root

• cd OFS_fim_build_root

• export OFS_BUILD_ROOT=$PWD

• git clone --recurse-submodules https://github.com/OFS/ofs-d5005.git

• cd ofs-d5005

• git checkout tags/ofs-d5005-1.0.1

• Install Quartus Patch

• cd license

• chmod +x quartus-0.0-0.01OFS-linux.run

• sudo ./quartus-0.0-0.01OFS-linux.run

▪ Test installation by building the provided FIM

FCCM 2023 49

Setting up the environment

▪ cd $OFS_BUILD_ROOT/ofs-d5005

▪ export OFS_ROOTDIR=$PWD

• OFS_ROOTDIR is the directory where you cloned the repo, e.g. /home/MyProject/ofs-d5005 *

▪ export WORKDIR=$OFS_ROOTDIR

▪ export VERDIR=$OFS_ROOTDIR/verification

▪ export QUARTUS_HOME=$QUARTUS_ROOTDIR

• QUARTUS_ROOTDIR is your Quartus installation directory, e.g. $QUARTUS_ROOTDIR/bin contains Quartus
executuable*

▪ export QUARTUS_INSTALL_DIR=$QUARTUS_ROOTDIR

▪ export IMPORT_IP_ROOTDIR=$QUARTUS_ROOTDIR/../ip

▪ export IP_ROOTDIR=$QUARTUS_ROOTDIR/../ip

▪ export OPAE_SDK_REPO_BRANCH=release/2.3.0

FCCM 2023 50

Compilation
▪ ofs-common/scripts/common/syn/build_top.sh [-p] target_configuration work_dir

• Usage: ofs-common/scripts/common/syn/build_top.sh [-k] [-p] []

▪ target_configuration - Specifies the project

For example: d5005

▪ work_dir

• Work Directory for this build in the form a directory name. It is created in the <local repo directory>/ofs-d5005/<work_dir> - NOTE:

• The directory name must start with "work". If the work directory exists, then the script stops and asks if you want to overwrite the
directory.

• Example

• ofs-common/scripts/common/syn/build_top.sh d5005 work_d5005

• work directory as a name will be created in <local repo directory>/ofs-d5005/work_d5005

• The obmission of <work_dir> results in a default work directory (<local repo directory>/ofs-d5005/work)

• compile reports and artifacts (.rpt, .sof, etc) are stored in <work_dir>/syn/syn_top/output_files

• There is a log file created in ofs-d5005 directory.

FCCM 2023 51

Generated

File Description

d5005.sof This is the Quartus generated programming file created by Quartus synthesis and
place and route. This file can be used to programming the FPGA using a JTAG
programmer. This file is used as the source file for the binary files used to program
the FPGA flash

d5005.bin This is an intermediate raw binary image of the FPGA

d5005_page1.bin This is the binary file created from input file, d5005.sof. This file is used as the
input file to the PACSign utility to generate “d5005_page1_unsigned.bin” binary
image file.

d5005_page1_unsigned.bin This is the unsigned PACSign output which can be programmed into the FPGA flash
of an unsigned D5005 using the OPAE SDK utility “fpgasupdate”

mfg_d5005_reversed.bin A special programming file for a third party programming device used in board
manufacturing. This file is typically not used.

FCCM 2023 52

Enable PR

▪ cd $OFS_BUILD_ROOT

▪ git clone https://github.com/OPAE/ofs-platform-afu-bbb

▪ cd ofs-platform-afu-bbb

▪ export OFS_PLATFORM_AFU_BBB=$PWD

▪ cd $OFS_ROOTDIR

▪ syn/common/scripts/generate_pr_release.sh -t work_d5005/build_tree d5005 work_d5005

FCCM 2023 53

PR Build Tree

▪ Bin

• Afu_synth

• Build_env_config

• Run.sh

• Update_pim

▪ Hw

• Blue_bbits

• D5005_page1_unsigned.bin

• D5005.sof

• Lib

• Build

• Fme-ifc-id.txt

• Fme-platform-class.txt

• platform

FCCM 2023 54

Unit Level Simulation

▪ Key components provided

• HSSI

• PCIe

• External Memory

• FIM management

▪ Simulation Requirement

• Python

• Quartus

• VCS

FCCM 2023 55

Running simulation

▪ Compiling all IP

• cd $OFS_ROOTDIR/ofs-common/scripts/common/sim

• sh gen_sim_files.sh d5005

▪ IP Simulation filelist

• $OFS_ROOTDIR/sim/scripts/ip_flist.f

▪ RTL file list for unit_test

• $OFS_ROOTDIR/sim/scripts/rtl_comb.f

▪ IPs generated

• $OFS_ROOTDIR/sim/scripts/qip_gen

▪ Running the simulation

• $OFS_ROOTDIR/sim/unit_test/<Unit Test Name>/scripts

• sh run_sim.sh VCS=1

FCCM 2023 56

OFS with SignalTap

▪ Perform a full compile using the script build_top.sh.

▪ Once the compile completes open the Quartus GUI using the FIM project. The Quartus project
is named d5005 and is located in the work directory syn/syn_top/d5005.qpf. Once the
project is loaded, go to Tools > Signal Tap Logic Analyzer to bring up the Signal Tap GUI.

▪ Add the signal needed for debug

AFU Developer Guide

FCCM 2023 58

OFS FIM

▪ OFS provides a build script with the following FPGA image creation options:

• Flat compile, which combines the FIM and AFU into one FPGA image loaded into the entire FPGA
device as static image

• PR (Partial Reconfiguration) compile that creates an FPGA image consisting of the FIM that is loaded
into the static region of the FPGA and a default AFU that is loaded into dynamic region.

▪ Build scripts included with OFS are verified to run in bash shell

Flat Compile

FCCM 2023 60

Hello FIM example (Top Level design)
If you intend to add a new module to the FIM area, then you will need to inform the host software of the new module. The FIM exposes its
functionalities to host software through a set of CSR registers that are mapped to an MMIO region (Memory Mapped IO). This set of CSR
registers and their operation is described in FIM MMIO Regions.

Step to add simple DFH register

1. Review current design documentation: OFS Tech Ref MMIO Regions

2. Understand FME and Port regions, DFH walking, DFH register structure

3. Run unit level simulations and review output: i. sim/unit_test/dfh_walker

4. Note DFH link list order, see DFH Walker Unit Level Simulation Output

5. Make code changes to top level FIM file to instantiate new DFH register

6. The DFH registers follow a link list. This example inserts the hello_fim DFH register after the EMIF DFH register, so the emif_csr.sv
parameters are updated to insert the hello_fim DFH register as next register in the link list.

7. Create the new hello_fim SystemVerilog files.

8. Update and run the dfh_walker unit simulation files

9. Update synthesis files to include the new hello_fim source files

10. Build and test the new FIM

FCCM 2023 61

OFS Top Level

▪ src/top/iofs_top.sv

Address Size (Byte) Feature Master

0x00000 –
0x0FFFF

64K FME (FME,
Error, etc)

Yes

0x10000 –
0x1FFFF

64K PMCI Proxy
(SPI
Controller)

Yes

0x20000 –
0x2FFFF

64K PCIe CSR

0x30000 –
0x3FFFF

64K HSSI CSR

0x40000 –
0x4FFFF

64K EMIF CSR

0x50000 –
0x5FFFF

64K Reserved

0x60000 –
0x6FFFF

64K Reserved

0x70000 –
0x7FFFF

64K Reserved

FCCM 2023 62

EMIF CSR (ipss/mem/emif_csr.sv)

The Hello_FIM DFH is inserted in the DFH link list after the EMIF CSR DFH and before the FME_PR DFH.
The file ipss/d5005/emif/emif_csr.sv contains a parameter defining the next address for the next DFH in in
the link list chain. You will change the next address offset to be 0x10000 so the reserved BPF AXI lite link
connected to the Hello_FIM DFH register is next in the DFH link list.

FCCM 2023 63

Hello FIM TOP (src/hello_fim/hello_fim_top.sv)

▪ Create hello_fim_top.sv, and store it in
src/hello_fim directory.

▪ The main purpose of this RTL is to convert AXI4-
Lite interface to a simple interface to interface
with the registers in hello_fim_com.sv.

▪ This register sets the DFH feature ID to 0xfff
which is undefined.

▪ For test purposes, using an undefined feature ID
will result in no driver being used.

▪ Normally, a defined feature ID will be used to
associate a specific driver with the FPGA module.

FCCM 2023 64

Hello FIM COM (src/hello_fim/hello_fim_com.sv)

Create hello_fim_com.sv, and store it in src/hello_fim directory. This is the simple RTL to
implement the Hello FIM registers. You may use this set of registers as the basis for your
custom implementation.

FCCM 2023 65

Update setting fiile

▪ Edit syn/syn_top/d5005.qsf

• set_global_assignment -name VERILOG_MACRO INCLUDE_HELLO_FIM

• set_global_assignment -name SOURCE_TCL_SCRIPT_FILE
../../../syn/setup/hello_fim_design_files.tcl

FCCM 2023 66

Build hello_fim example

▪ Execute command

• cd $OFS_ROOTDIR

• ofs-common/scripts/common/syn/build_top.sh d5005 work_d5005_hello_fim

▪ Updating the board

• sudo fpgasupdate d5005_page1_unsigned.bin <D5005 PCIe B:D.F>

• sudo rsu bmcimg <D5005 PCIe B:D.F>

FCCM 2023 67

Running Hello World

PR compile

FCCM 2023 69

OFS FIM for PR Compile

▪ AXI Streaming (AXI-S) interface to Host via
PCIe Gen3xx16

▪ Avalon Memory-Mapped Channels (4) to
the DDR4 EMIF interface

▪ AXI Streaming (AXI-S) interface to the HSSI
10G Ethernet

FCCM 2023 70

Platform Interface Manager (PIM)

▪ PIM is a transformation layer between an AFU and raw FIM device interface.

• Standard AFU-side SystemVerilog interfaces, both AXI and Avalon memory mapped and streaming.

• PIM-provided modules that transform FIM interfaces to PIM interfaces. Transformations may be
simple, such as mapping a FIM AXI-MM interface to the PIM's AXI-MM. Transformations may also be
complex, such as mapping a PCIe TLP stream to AXI-MM, adding a clock crossing and sorting read
responses.

• A top-level module and interface bundle with consistent naming across all platforms, promoting AFU
portability.

▪ Ofs-platform-afu-bbb repository contains the PIM files and example AFU.

• git clone https://github.com/OFS/ofs-platform-afu-bbb.git

FCCM 2023

https://github.com/OFS/ofs-platform-afu-bbb.git

FCCM 2023 71

Top module

▪ If using PIM

• ofs_plat_afu.sv

• ex) https://github.com/OFS/examples-
afu/blob/main/tutorial/afu_types/01_pim_ifc/hello_world/hw/rtl/avalon/ofs_plat_afu.sv

▪ If not using PIM

• afu_main.sv

• ex) https://github.com/OFS/examples-
afu/blob/main/tutorial/afu_types/03_afu_main/hello_world/hw/rtl/afu_main.sv

• Need to handle AXI streaming I/F which includes PCIE TLP packets by developer themselves

https://github.com/OFS/examples-afu/blob/main/tutorial/afu_types/01_pim_ifc/hello_world/hw/rtl/avalon/ofs_plat_afu.sv
https://github.com/OFS/examples-afu/blob/main/tutorial/afu_types/03_afu_main/hello_world/hw/rtl/afu_main.sv

FCCM 2023 72

Example AFU (hello_world)

▪ Compiling and executing PIM-based hello_world
AFU

• hw directory - contains the RTL to implement
the hardware functionality using CCIP, Avalon
and AXI interface

• Sw directory – contains source code of the
host application that communicates with the
AFU hardware

▪ git clone https://github.com/OFS/examples-
afu.git

FCCM 2023 73

Compiling hello_world sample AFU

▪ Environment setup

• export FPGA_BBB_CCI_SRC=$OFS_BUILD_ROOT/examples-afu

• export OPAE_PLATFORM_ROOT=$OFS_ROOTDIR/work_d5005/build_tree

▪ Execute

• ofs-common/scripts/common/syn/generate_pr_release.sh -t work_d5005/build_tree d5005
work_d5005

• afu_synth_setup -s
$FPGA_BBB_CCI_SRC/tutorial/afu_types/01_pim_ifc/hello_world/hw/rtl/axi/sources.txt
hello_world_synth

• cd hello_world_synth

• ${OPAE_PLATFORM_ROOT}/bin/afu_synth

▪ “hello_world.gbs” bitstream will be created

FCCM 2023 74

Running the AFU

▪ Update PR image

• sudo fpgasupdate hello_world.gbs 3b:00.0

▪ Create virtual function (VFs) and bond VFs to VFIO Driver

• sudo pci_device 3b:00.0 vf 3

• sudo opae.io init -d 0000:3b:00.1 <Your username>

• sudo opae.io init -d 0000:3b:00.2 <Your username>

• sudo opae.io init -d 0000:3b:00.3 <Your username>

▪ Host Application

• cd $FPGA_BBB_CCI_SRC/tutorial/afu_types/01_pim_ifc/hello_world/sw/

• make

• ./hello_world

AFU Simulation Environment (ASE)

FCCM 2023 76

▪ ASE is a hardware/software co-simulation
environment for AFU

▪ ASE uses the simulator Direct Programming
Interface (DPI) to provide HW/SW connectivity.

▪ The PCIe connection is emulated with
transactional model

Overview

FCCM 2023 77

ASE Operation

▪ Attempts to replicate the transactions that will be seen in real system.

▪ Provides a memory model to AFU, so illegal memory accesses can be identified early.

▪ Not a cache simulator.

▪ Does not guarantee synthesizability or timing closure.

▪ Does not model system latency.

▪ No administrator privileges are needed to run ASE. All code is user level.

FCCM 2023 78

Running ASE
▪ Set the environment variables

▪ Preparing hello_world AFU for SIM

• afu_sim_setup -s
$FPGA_BBB_CCI_SRC/tutorial/afu_types/01_pim_ifc/hello_
world/hw/rtl/axi/sources.txt -t VCS hello_world_sim

▪ Build and execute the AFU RTL simulator

• cd $OFS_ROOTDIR/work_d5005/hello_world_sim

• make

• make sim

▪ Open second shell for host software

• export
ASE_WORKDIR=$OFS_ROOTDIR/work_d5005/hello_world_
sim/work

• cd $FPGA_BBB_CCI_SRC/examples-
afu/tutorial/afu_types/01_pim_ifc/hello_world/sw

• make

• with_ase ./hello_world

Summary

FCCM 2023 80

Why is OFS?

▪ Use Standard Interfaces and Application Programming Interfaces
(APIs) to accelerate workload development and enable code reuse

▪ Port existing workloads to the Acceleration Functional Unit (AFU)
Region and proliferate across OFS-based platforms for FPGA-based
acceleration or CPU offload

▪ Utilize a growing ecosystem of OFS-enabled boards and workloads
provided by Intel and third parties

▪ Deploy Bare Metal, Virtualized, or Containerized applications with data
center class management for NFV, SmartNIC, VRAN, FSI, and more

▪ Build Application Specific FPGA Interface Managers (FIMs) from the
provided reference FIMs using a modular, ‘take and tailor’ approach

▪ Leverage Open-Sourced and Upstreamed Software Code delivered via
Git Repositories with native support from leading software vendors

FCCM 2023 81

Linux Upstreaming

Contribute to
Linux Kernel

Enable more
developers

OS vendors
distribute in their
Linux based OS

Enable even
more developers

• Reuse drivers for new cards & gens

• Get bug fixes from community

• Code reviewed by community

• Influence kernel development

• Avoid 3rd party impl. conflicts

• Enable more developers

FCCM 2023 82

.SOF

Board

FPGADIMM CPU
(HOST)

PCIeFIM

AFU
IPs

SW Stack to Execute on HW

FIM & IP Subsystem Drivers

Device RTL (Fullsystem/IP Authoring)

User Space Libraries (OPAE & MMD)

Host User Code

Discovery Framework (DFL)

Validation Framework

UVM Framework

ASE (AFU Simulation Environment)

Example Designs with Host Exercisers

IPs

OFS BASE FIM

• FIM COMMON
https://github.com/OFS/ofs-fim-common

• OFS-D5005 (Intel Stratix 10)
https://github.com/OFS/ofs-d5005

Drivers and SW Tools

• LINUX-DFL
https://github.com/OFS/linux-dfl

• OPAE-SDK
https://github.com/OFS/opae-sdk

Validation Framework

• OPAE-SIM
https://github.com/OFS
/opae-sim

Check out OFS: https://github.com/OFS!

https://github.com/OFS/ofs-fim-common
https://github.com/OFS/ofs-d5005
https://github.com/OFS/linux-dfl
https://github.com/OFS/opae-sdk
https://github.com/OFS/opae-sim
https://github.com/OFS

FCCM 2023 83

Term Acronym Description

FPGA Interface Manger FIM FIMs provide platform management, functionality, clocks, resets, and standard interfaces to the host and AFU. Reference FIMs are
provided as working examples to help users develop their own custom platforms. Users can ‘take and tailor’ the reference FIMs.

Acceleration Functional Unit
Region

AFU This region is the designated area for custom workload development, containing both static and dynamic regions.

Partial Reconfiguration Region PR Region in the AFU for dynamically programming part or all of the workload.

FPGA Management Engine FME Contains FPGA management CSRs and logic for global control of the device.

Hard Processor System HPS The HPS in the Agilex architecture has a quad core ARM Cortex A-53 MPCore and integrates a wide set of peripherals to reduce
board size and increase performance

Board Management Controller BMC Controls, monitors, and grants access to board features providing Root of Trust using a MAX 10 FPGA. The Agilex architecture
includes an enhanced BMC architecture.

Subsystems Memory, PCIe, and HSSI are built as modular subsystem to make them easier to modify.

Interconnect Fabrics Route packets from PCIe subsystem to respective PF/VF functions.

Host Exerciser Modules HE-LBK, HE-
MEM, HE-HSSI

Host exercisers do full memory, PCIe, or ethernet loopbacks to demonstrate external interface capabilities. Host exercisers are
evaluation tools and not meant to included in production designs.

AXI-Lite Interface AXI is an industry-standard interface protocol. AXI provides a standardized IP protocol compatible with ARM and ARM partners.

Universal Verification
Methodology Support

UVM This industry standard verification environment is provided for the FIM & AFU.

Open Programmable Acceleration
Engine Software Development Kit

OPAE SDK A collection of libraries and tools to facilitate the development of software applications and accelerators using OPAE.

Platform Interface Manager PIM An interface manager that comprises two components: a configurable platform specific interface for board developers and a
collection of shims that AFU developers can use to handle clock crossing, response sorting, buffering and different protocols.

Remote System Update RSU A remote system update operation sends an instruction to the device that triggers a power cycle of the card only, forcing
reconfiguration

Device Feature List DFL A main component of the software infrastructure for OFS. The DFL driver provides support for FPGA devices that are designed to
support the Device Feature List. The DFL, which is implemented in RTL, consists of a self-describing data structure in PCI BAR
space that allows the DFL driver to automatically load the drivers required for a given FPGA configuration.

AFU Simulation Environment ASE A hardware/software co-simulation environment provided for the AFU as part of OPAE.

FCCM 2023 84

Reference

▪ Ofs.github.io

▪ https://github.com/OFS/examples-afu/

▪ https://github.com/OFS/ofs-platform-afu-bbb

https://github.com/OFS/examples-afu/blob/main/tutorial/afu_types/01_pim_ifc
https://github.com/OFS/examples-afu/
https://github.com/OFS/ofs-platform-afu-bbb

