

# FPGA Architecture for Deep Learning

FCCM'23 Tutorial

#### Organizers





Vaughn Betz Prof. of ECE U Toronto Andrew Boutros PhD Student @ U Toronto ML Systems Architect @ MangoBoost

#### Contributors









#### Aman Arceayedramin Rasoulinezhadzy K. John

PhD Student U Texas Austin PhD Student U Sydney Prof. of ECE U Texas Austin Philip Leong Prof. of Computer Systems U Sydney

# Raise your hand if you have used an FPGA for accelerating a deep learning (DL) workload

#### Raise your hand if you have used a new DL-optimized FPGA



#### Keep it interactive 🖖

#### Come say hi during breaks 🤝



### FPGA Architecture Through a DL Lens

## FPGA Architecture Through a DL Lens

FPGA Architecture, DL Implications and Opportunities (Vaughn)

#### Deep Learning Inference → Becoming Ubiquitous











#### **Energy Efficiency and Latency Matter**



Chevy Bolt ~6 kW in city

Nvidia Drive AGX Pegasus (2022) **750W** 



Low inference latency crucial for safety!



Key metric is **Perf / W / \$** 

Power is ~30% of cost

12

~6% of global electricity demand by 2030 [1]

Low inference latency enables cascade of Al algorithms + networking!

#### FPGA Architecture (through a DL Lens) from 300 m

1. What are the key building blocks of FPGAs?

2. How do they create strengths & challenges for Deep Learning?

3. Opportunities to create DL-optimized architectures

**FPGA** Architecture 101



Any function of K or fewer inputs, or a 1 bit adder





SRAM-controlled routing muxes

#### Many Logic Blocks ... Spatial Computing

Layout plot: Altera Stratix IV GX 230



### Prog. Logic & Routing Strength 1: Variable Precision

Can program to realize hardware of any bit width

- N-bit adder: ~N LEs
- N-bit multiplier: ~N<sup>2</sup> LEs



- DL tolerant of low precision
- No one best precision for all networks and all layers
- Use lowest precision that meets accuracy needs for each network / layer

 $\rightarrow$  No need to pick from a limited group of precisions or numeric formats

Cv

Cy

#### Leveraging Variable Precision: Microsoft Brainwave



Small, custom floating point: 7x performance

No accuracy loss at (retrained) custom 9-bit floating point

Figures from [E. Chung et al, "Accelerating Persistent Neural Networks at Datacenter Scale," Hot Chips 2017]

#### Prog. Logic & Routing Strength 2: Spatial Compute Energy

Can reprogram FPGA to implement exact hardware needed by network

- Programmable routing: directly wire data from one unit to another
- Programmable logic: perform only necessary operation, w/o instruction stream  $\rightarrow$  Large power / efficiency gains possible

45 nm CPU energy breakdown [from M. Horowitz, "Computing's Energy Problem," *ISSCC*, 2014].



#### Prog. Logic & Routing Weakness: Area & Delay Overhead

- Programmability not free!
- LEs and programmable routing larger & slower than gates & wires
  - Average: ~25 30x larger and ~3x slower!
- How to mitigate?
  - Implement common functions in hardened blocks
  - Less programmable but built with gates (like an ASIC)
  - Example: DSP blocks for larger multiply-accumulate
- Opportunity 1
  - Can we make LEs themselves more efficient for DL operations?

A. Boutros, S. Yazdanshenas and V. Betz, "You Can't Improve What You Don't Measure: FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference," ACM TRETS, Dec. 2018, pp. 20:1 – 20:23.

#### Hard Block Example: DSP Blocks



25x more dense & 3x faster?

#### Hard Blocks: Programmable Routing Impact



- New block  $\rightarrow$  Needs muxes to/from programmable routing wires
- Column of blocks  $\rightarrow$  Another channel of programmable routing
- Programmable Routing Area ∝ Block<sub>inputs</sub> + Block<sub>outputs</sub>

#### Hard Blocks: Add Low-Cost Programmability



- MAC  $\rightarrow$  multiply or MAC
- Register inputs & outputs  $\rightarrow$  Optional registering
- 18-bit FIR filters: 6X 8X density & 2X 2.5X speed vs. LE-implementation

## Strength 3: Massive Parallelism



Blocks

DSP

- Tens of thousands of multipliers in recent devices
- Designed for (mostly wireless) signal processing
- Opportunity 2: New hard blocks?



5

#### Block RAM

RAM Blocks

- Thousands of independent RAM blocks, spatially distributed
- Best size?
  - Trade-off: larger blocks lead to lower area/bit
  - Smaller blocks let you fit more RAM blocks & bandwidth in chip
  - $\circ$  ~20 kb / block a common choice



Narrow &

Deep

#### Strength 4: Flexible Memory → Low Latency

Huge flexibility in combining RAMs with programmable logic & routing

- Different for each layer
- Custom scatter/gather can exploit sparsity

#### Massive bandwidth

• ~Pb/s of on-chip bandwidth, *split into 10,000+ components* 

Can keep compute units fed with little or no batching if most/all data on chip

• GPUs batch multiple inputs to amortize weight re-loading  $\rightarrow$  latency increase

Challenge: very large networks need off-chip memory  $\rightarrow$  weakens advantage



Wide &

Shallow

#### Block RAM: Under the Hood

Unique feature: RAM configurable width/depth

- Increases flexibility
- E.g. 18k words x 1b or 512 words x 36b

#### **Opportunity 3**:

- Tens of thousands of RAMs
- Can connect to anything
- Can we add in-memory processing cheaply?



### Don't Forget I/O !



#### **Strength** 5: Low Latency, Highly Flexible I/O

HW accelerated, low latency

Myriad I/O options: DDR5, PCIe, Ethernet, custom standards, ...

Datacenter: scale in space



#### Embedded: low latency & custom I/O



30

#### Recent Developments: NoCs, Embedded Accelerators



Achronix Speedster 7t



Efficient system-level interconnect for (high bandwidth) I/O to prog. fabric

**Opportunity 4:** easier to integrate coarse-grained / novel accelerators

## FPGA Architecture Through a DL Lens

Strengths & Weaknesses vs. DL Application Attributes (Vaughn)

#### Deep Learning Attributes and FPGAs

| Characteristic        |                                                       |                                                                      |
|-----------------------|-------------------------------------------------------|----------------------------------------------------------------------|
| Precision             | Low                                                   | High                                                                 |
| Sparse Weights?       | Yes: Efficient with custom memory & hw scatter-gather | No: still efficient, but less opportunity for customization          |
| Latency<br>Constraint | Tight                                                 | Loose: batching can help GPU<br>efficiency                           |
| Network Size          | Moderate: on-chip memory<br>stores much of network    | Very large: Off-chip memory<br>interfaces most important             |
| Phase                 | Inference                                             | Training                                                             |
| Network Changes       | Rare                                                  | Frequent: Some accelerator styles will reduce developer productivity |



### **FPGA DL Accelerators and Architectures**

## FPGA DL Accelerators and Architectures

Styles of Accelerating DL using FPGAs (Andrew)
Generality

Efficiency

#### Generality



Efficiency





M. Hall et al, "From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation", FPT 2020 S. Hadjis et al, "TensorFlow to Cloud FPGAs: Tradeoffs for Accelerating Deep Neural Networks", FPL 2019



A. Boutros et al, "Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs", FPT 2020 Y. Yu et al, "OPU: An FPGA-Based Overlay Processor for Convolutional Neural Networks", TVLSI 2020 Two Key Challenges for Accelerating DL using FPGAs ...



## Two Key Challenges for Accelerating DL using FPGAs ...

Generality

Overlays (Soft Processors)

Custom HW Generators

# The Overhead of Reconfigurability

Can we achieve competitive AI inference performance on FPGAs?

# **Ease of Programming**

How to make FPGAs accessible for Al application developers?

Efficiency

#### Two Key Challenges for Accelerating DL using FPGAs ...

Generality





# The Overhead of Reconfigurability

Can we achieve competitive AI inference performance on FPGAs?

## **Ease of Programming**

How to make FPGAs accessible for Al application developers?

Will show two examples from these two design styles & how they can design styles & how they can design styles & how they can design styles with the second styles with the second style st

# Design Approach 1 Custom HW Generators (HPIPE)

#### **Design Philosophy**

Commonly  $\rightarrow$  Temporal mapping on PE arrays

- Sequential processing of layers
- PEs handle any layer  $\rightarrow$  **lower efficiency**



## **Design Philosophy**

Commonly  $\rightarrow$  Temporal mapping on PE arrays

- Sequential processing of layers
- PEs handle any layer  $\rightarrow$  **lower efficiency**



- Per-layer custom HW → higher efficiency
- Exploit pipeline parallelism



Conv2D 7x7.

stride 2

d



Conv2D 5x5,

ಹ

Conv2D 3x3

stride 1

#### Mobilenet-V1+SSD Layers

Intel Stratix-10 GX2800

Conv2D 16

Conv2D 18

Input Layer

## **Design Philosophy**

Commonly  $\rightarrow$  Temporal mapping on PE arrays

- Sequential processing of layers
- PEs handle any layer → **lower efficiency**

Instead  $\rightarrow$  Spatial mapping to specialized units

- Per-layer custom HW → higher efficiency
- Exploit pipeline parallelism

#### Mobilenet-V1+SSD Layers

## **Design Philosophy**

Commonly  $\rightarrow$  Temporal mapping on PE arrays

- Sequential processing of layers
- PEs handle any layer → **lower efficiency**

Instead  $\rightarrow$  Spatial mapping to specialized units

- Per-layer custom HW → higher efficiency
- Exploit pipeline parallelism

Very efficient but ... requires a new implementation for each model!

M. Hall et al, "From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation", FPT 2020

## Auto Generation of Custom CNN HW (HPIPE)



#### ResNet-50 Results (Conventional Stratix 10 FPGA)

- 4x higher batch-1 throughput vs.
   V100 GPU at similar (low) latency
- 1.4x higher batch-8 throughput vs.
   V100 GPU at 2x lower latency



#### MobileNet-V2 Results (AI-Optimized Stratix 10 FPGA)

- 17x higher batch-1 throughput vs.
   V100 GPU at lower latency
- 1.3x higher batch-128 throughput vs. V100 GPU at 3x lower latency



## Design Approach 2 FPGA Overlays (NPU)



#### **Traditional Flow**





#### Neural Processing Unit (NPU)

- Very Long Instruction Word (VLIW) soft processor 5 coarse grained stages
- Amortize control → Single instruction executes 45,000 operations
- Customize memory subsystem → Exploit tremendous on-chip memory BW
- Targeting memory-bound models (MLPs, RNNs, GRUs, LSTMs)



#### Results vs. Same-Generation DL-Optimized GPUs



Automatic custom HW generation  $\rightarrow$  HPIPE

Software-programmable Overlays  $\rightarrow$  NPU

Automatic custom HW generation  $\rightarrow$  HPIPE Software-programmable Overlays  $\rightarrow$  NPU

Can we make current FPGAs easier to use for DL application developers?

Automatic custom HW generation  $\rightarrow$  HPIPE Software-programmable Overlays  $\rightarrow$  NPU

#### Can we make current FPGAs easier to use for DL application developers? YES!

Tensorflow to LUTs & wires  $\rightarrow$  compile new bitstream for each model Program purely in software  $\rightarrow$  run instructions on a single optimized bitstream

Automatic custom HW generation  $\rightarrow$  HPIPE Software-programmable Overlays  $\rightarrow$  NPU

#### Can we make current FPGAs easier to use for DL application developers? YES!

Tensorflow to LUTs & wires  $\rightarrow$  compile new bitstream for each model Program purely in software  $\rightarrow$  run instructions on a single optimized bitstream

Both performance and ease-of-use can also be improved by enhancing underlying FPGA architecture for DL use cases ...

# FPGA DL Accelerators and Architectures

Architecture Exploration of DL-Optimized FPGAs (Vaughn)

## **FPGA** Architecture Research



## **FPGA** Architecture Research





## VTR (Verilog to Routing)



ODIN or Yosys followed by ABC

## VTR (Verilog to Routing)



Think Xilinx/AMD Vivado or Altera/Intel Quartus

But...

For an FPGA described in the file

And

No bitstream generation

#### FPGA Architecture Model CAD Tool Area, Frequency, Power

#### **FPGA** Architecture Model

Blocks

Number and type of blocks

Layout of blocks on the FPGA

Routing

Distribution of wire segments

Types of switches

Configuration circuitry

If you need to experiment with it

#### **FPGA** Architecture Model in VTR

#### tiles>

```
<tile name="io" capacity="8" area="0">
</tile>
<tile name="clb" area="53894">
</tile>
<tile name="memory" height="2" area="548000">
</tile>
</tile name="mult_36" height="6" area="396000">
</tile>
</tile>
```

#### layout>

#### ievice>

#### cpb\_type name="clb">

#### How do you create an FPGA architecture model?

#### Start from already existing ones in VTR

Capture the architecture attributes from existing FPGAs

Model it yourself using CAD tools like COFFE

## FPGA Benchmark Suites

| Benchmark<br>Suite | Medium-<br>Large | Hetero-<br>genous | Open-source<br>CAD | DL-specific           |
|--------------------|------------------|-------------------|--------------------|-----------------------|
| MCNC20             |                  |                   | ✓                  |                       |
| UMass RCG          | <b>v</b>         | -                 |                    |                       |
| Groundhog          | -                | <b>v</b>          | -                  |                       |
| ERCBench           | -                | ✓                 |                    |                       |
| VTR                |                  | ✓                 | ~                  |                       |
| Titan              | <b>v</b>         | <b>v</b>          |                    |                       |
| Koios              | <b>v</b>         | <b>v</b>          | <b>v</b>           | <ul> <li>✓</li> </ul> |





#### Koios – The Titan of Intelligence

A DL-specific benchmark suite for FPGA research

40 benchmarks that cover a diverse representative space

Open-source and works with VTR

Contains original designs, and designs re-created from prior works

Suitable for DL-specific FPGA architecture exploration and CAD research

Arora et al., Koios: A Deep Learning Benchmark Suite for FPGA Architecture and CAD Research, FPL'21
### The Koios Benchmark Suite



### Case Study - Let's add a new block for DL

How much FPGA die area should be dedicated to it?

What is the impact on programmable routing?

What functionality should be hardened?

How flexible should that block be?



### Case Study - Let's add a new block for DL

| Use COFFE                                                                                                                        | Use VTR                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Functionality, including Implements core with<br>programmable modes standard cells &<br>programmable routing<br>with full custom | Add new block to a full<br>VTR architecture                                                                                                               |
|                                                                                                                                  | Use a benchmark suite<br>like Koios                                                                                                                       |
| → Speed & Area<br>→ VTR-compatible model                                                                                         | Area/timing/routability for                                                                                                                               |
| of block                                                                                                                         | new architecture                                                                                                                                          |
|                                                                                                                                  | Use COFFE<br>Implements core with<br>standard cells &<br>programmable routing<br>with full custom<br>→ Speed & Area<br>→ VTR-compatible model<br>of block |

# FPGA DL Accelerators and Architectures

Taxonomy of DL-optimized FPGA Architectures (Vaughn)

### What can we improve?



We are changing the architecture of the FPGA itself E.g. changing the size of a LUT in a logic block

Not the design configured/programmed into the FPGA E.g. designing a Brainwave like accelerator for an existing FPGA

Change existing blocks



Add new in-fabric blocks



Add new blocks outside the fabric



Add new chiplets within a package



### Taxonomy







## Traditional FPGA Blocks for DL

# Traditional FPGA Blocks for DL



### Good News for FPGAs ... Low-Precision DL Inference

DL is resilient against noise/approximations  $\rightarrow$  Use low precision MACs for inference

1.6325475272 ⇒ 1.633 "It is a cat anyway"



Many techniques to enable INT8/INT4 calculations with no accuracy loss Can sacrifice a bit of accuracy by going down to ternary/binary networks

Good news for FPGAs  $\rightarrow$  Can implement custom precisions efficiently!

### Looking at Conventional FPGA Architectures ...



### ... LEs are the most common blocks in an FPGA



### ... LEs are the most common blocks in an FPGA











95







### Back to Grade 3 Maths ...





Back to Grade 3 Maths ...





### How is it mapped?





### How is it mapped?







### How is it mapped?





### **3 Suggested Ideas**

### Idea 1: Add a 2nd carry chain



# More efficient adder compressor trees

### 3 Suggested Ideas Idea 1: Add a 2nd

# carry chain

More efficient adder compressor trees

# Idea 2: Add more adders in the chain


### 3 Suggested Ideas Idea 1: Add a 2nd carry chain



More efficient adder compressor trees

Idea 2: Add more adders in the chain

3-LUT

3-LUT

3-LUT

3-LUT

3-LUT

3-LUT

3-LUT

3-LUT

#### Idea 3: Add shadow multipliers to LE clusters (reuse ports)



Denser arithmetic in general

LE

Denser multiplies vs. implementing in LEs

# Results Low Cost Change: 4-bit chain (Idea 2) 1.5x denser + 10% faster Also benefits other non-DL applications 3% die area increase High Gain Change: 9-bit Shadow Multipliers (Idea 3) 2.4x denser + 17% faster 12% die area increase

M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020

# It's all about Adders ...



In MACs Sum partial products to get final output In Binary NNs Sum XNOR outputs to get final output



# It's all about Adders ...



In MACs Sum partial products to get final output





In the previous ideas, we add more full adders to FPGA LEs ... Full adders: 3 in  $\rightarrow$  2 bits (1 same significance + 1 higher order)

# It's all about Adders ...



In MACs Sum partial products to get final output In Binary NNs Sum XNOR outputs to get final output



(:6

113

In the previous ideas, we add more full adders to FPGA LEs ... Full adders: 3 in  $\rightarrow$  2 bits (1 same significance + 1 higher order)

In many cases, we need to add more than 3 bits Compressors: N in  $\rightarrow$  M bits

# Compressors are important ...

Generalized parallel counters/adders (i.e. compressors) are not efficient when mapped to FPGA LEs

Across many microbenchmarks >35% of compressors are C6:111 Most expensive on FPGAs



#### Can we improve efficiency with minimal additions to FPGA LEs?

# 6-Input XOR gate sharing (expensive) LE inputs



# 6-Input XOR gate sharing (expensive) LE inputs



#### < 0.5% area overhead

Up to 36% denser compressor implementations

# Traditional FPGA Blocks for DL



### **Traditional FPGA DSPs**



- Optimized for wireless communication & filtering

   Intel → 2x18b or 1x27b multiplication
   Xilinx → 1x 18x27
- Can do better if we care about low-precision MACs

# Key Design Goals

- Backward compatibility
  - $\circ$  Usable for other applications
- Ideally no effect on block frequency
  - No negative impact on non-DL designs
- Do not add (relatively expensive) routing ports
  - Avoid large area cost
  - Avoid potential routing hotspots

# More Fracturability ...

- Support traditional modes (27×27,18x18)
- Add new low-precision modes
  - 4x 9b multiply/MAC
  - 8x 4b multiply/MAC

Keeping it low-cost is key ...

- No additional routing ports
- Max reuse of existing multiplier arrays



A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18

9×18

9×18

9×9

18×18

### Low Area Overhead

# Block area overhead:



which is equivalent to

~0.6% FPGA Core Area

in DSP-rich devices

### ... and runs at the same frequency

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18



# 3 CNNs on 2 accelerator architectures



#### in case of 8-bit precision



#### in case of 4-bit precision



#### **ASU CNN Accelerator**



Intel DLA

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18

### **Industrial Adoption**

4x9b, 2x18b, 1x27b



27bx24b, 3x9b

... both support similar INT9 mode!

# **Going beyond Precision**

- Special dedicated links
  - Semi-2D DSP-to-DSP interconnect



2D Systolic Array



Transform into columnar structure



# Going beyond Precision

- **Special dedicated links** 
  - Semi-2D DSP-to-DSP interconnect 0
- Better localization of data
  - Embedded RF to reuse data  $\bigcirc$



2D Systolic Array

Transform into





S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19

# Huge Energy Savings





# New DL-optimized FPGA Blocks

# New DL-optimized FPGA Blocks

DL-Specific Fabric Blocks: Commercial Tensor Blocks (Vaughn)

# Achronix Speedster MLP

- Small & medium int & fp formats
   Decomposable multipliers
- Input limit: provide extra inputs from closely coupled BRAM
- Enables 16x 8-bit multiples
- Or 32x 4-bit multiplies

|                | Formats                                   |
|----------------|-------------------------------------------|
| Integer        | int3, int4, int6, int8, int16             |
| Floating Point | fp3, fp4, fp6, fp8, fp16, bfloat16, fp24. |



# Intel Stratix 10 NX:Tensor Block

30x int8 multipliers instead of 2x int18 multipliers

- Or 60x int4 multipliers
- Also block floating point bfp16 and bfp12 (~int8/int4 with 10-element shared exponent)

Focusing on this mode



30x int8

### Tensor Block int8 30x int8 multipliers instead of 2x int18 multipliers



### Tensor Block int8 30x int8 multipliers instead of 2x int18 multipliers Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators



Dedicated Cascades: Cheap

### **Tensor Block int8**

**30x int8** multipliers instead of **2x int18** multipliers <u>Limit Outputs:</u> Arrange multipliers as **3x dot-10** engines + accumulators <u>Limit Inputs:</u> Broadcast one set of inputs to all dot-10 engines



# **Tensor Block int8**

30x int8 multipliers instead of 2x int18 multipliers <u>Limit Outputs:</u> Arrange multipliers as 3x dot-10 engines + accumulators <u>Limit Inputs:</u> Broadcast one set of inputs to all dot-10 engines <u>Limit Inputs:</u> Ping-pong input reuse chain loaded from the block above



80 inputs

### **Tensor Block int8**

30x int8 multipliers instead of 2x int18 multipliers

15x peak int8 TOPS but significant I/O constraints

<u>Limit Outputs:</u> Arrange multipliers as **3x dot-10** engines + accumulators <u>Limit Inputs:</u> Broadcast one set of inputs to all dot-10 engines <u>Limit Inputs:</u> Ping-pong input reuse chain loaded from the block above



### Tensor Block: 3 Modes to Give Interconnect Options







Tensor Mode: 30x int8 Broadcast & preload inputs Three dot-10

#### Vector Mode: 6x int8

No input restriction one dot-6

Scalar Mode: 3x int8 No input or output restrictions

# Can CNNs Exploit S10 Tensor Blocks? → HPIPE Yes! Need all modes



Dense weights

- **Tensor mode**, preload activations, broadcast weights
  - Except depthwise conv: scalar mode
- 5x speedup vs. DSP blocks
- Less than 15x peak, but well above any other reported results

MobileNetV1 - V3: Multiple convolution types

#### Sparse weights

• Vector mode

• **1.9x speedup** vs. DSP blocks

M. Stan, et al, "HPIPE NX: Boosting CNN Inference Acceleration Performance with AI-Optimized FPGAs," FPT, Dec. 2022.

### Can RNNs & LSTMs Exploit S10 Tensor Blocks? $\rightarrow$ NPU



Yes! Need some batching

- Preload activations, in batches of 3
- Broadcast weights
- 3.5x speedup vs. DSP blocks

A. Boutros, et al "Beyond Peak Performance: Comparing The Real Performance of AI-Optimized FPGAs and GPUs," FPT, 2020.

### **Tensor Block Takeaway**

Large gains possible with a more "coarse-grained" block

Have to minimize/re-use/restructure interconnect

- Not trivial to use
- Can't just recompile your RTL/HLS → **restructure your computation**

# New DL-optimized FPGA Blocks

DL-Specific Fabric Blocks: Academic Tensor Blocks (Vaughn)

# **Tensor Slices**

Tensor/matrix operations are at the heart of Deep Learning

Matrix multiplier using Logic Blocks and DSP Slices is inefficient (~4x slower and ~10x larger than an ASIC)

Can we perform matrix multiplication on an FPGA more efficiently?



Arora et al. "Tensor Slices to the Rescue: Supercharging ML Acceleration on FPGAs", ISFPGA 2021 Arora *et al.*, "Tensor Slices: FPGA Building Blocks For The Deep Learning Era," ACM TRETS 2022

# Why add Tensor Slices?





Compute density. Pack more compute in the same area footprint.



Reduce routing wire usage



Reduce area and increase frequency for implementing ML designs





Update tools, provide libraries, etc.



Less generic/flexible than a typical FPGA. But worth it because of so many ML applications.

# Tensor Slice: High level diagram


## Tensor Slice: High level diagram



### **Tensor Slice: Design Space**

#### Architecture

- Systolic
- Dot-product based

#### **Operations to support**

- Matrix matrix multiplication
- Matrix vector multiplication
- Element wise operations

#### FPGA area to spend on them

- 5%, 10%, 20%, 30%,...
- Replace all DSP Slices with Tensor Slices

#### How to lay them out in the FPGA

- Along columns
- Grouped together

#### Size (Number of PEs)

- 2x2, 4x4, 8x8, 16x16
- Something else

#### **Precisions to support**

- Integer (int4, int8, int16)
- Floating point (bf16, fp16)

#### **Tensor Slice: Architecture and Layout**



| 10 10 10 10 10 <u>10</u> |      | 20 60 60 60 60<br>20 60 60 60 60 |          |                                       |  |
|--------------------------|------|----------------------------------|----------|---------------------------------------|--|
| en en en en en 👯         |      | 20 00 00 00 00                   |          |                                       |  |
| 00 00 00 00 00 00 00     |      | 10 10 10 10 10                   |          | 00 00 00 00 00 00 00 00               |  |
| an an an an an an        |      | 20 20 20 20 20                   |          |                                       |  |
| 60 10 10 10 10 10 10     |      | 20 20 20 20 20                   |          | CO CO CO CO CO CO CO                  |  |
| 0 10 10 10 10            |      | 25 25 25 25 25                   |          | 45 45 45 45 45                        |  |
| 40 10 40 10 40 10        |      | 20 23 25 25 25                   | 15 SHORE |                                       |  |
| 25 25 25 25 25           |      | 20 25 20 25 25                   |          | ****                                  |  |
| 25 20 25 20 25 20        |      | 25 25 25 25 25                   |          | 25 25 25 25 25 25                     |  |
|                          |      | 10 10 10 10 10 10                |          | 25 25 25 25 25                        |  |
| 25 15 25 15 25 15        |      | 55 25 25 25 25 25                |          | 25 25 25 25 25 15                     |  |
| 25 55 25 55 25           |      | 55 25 25 25 25 25                |          | A A A A A A                           |  |
| 50 GC 50 GC 50 GC        |      | 400 600 600 600 600              |          | VC VC VC VC VC VC                     |  |
|                          |      |                                  |          | RRRRR                                 |  |
| ***                      |      | ****                             |          | ****                                  |  |
|                          |      |                                  |          |                                       |  |
| ***                      |      | ****                             |          | · · · · · · · · · · · · · · · · · · · |  |
| 發行發行的 的 算                |      | ***                              |          | 60 60 60 60 60 <u>10</u>              |  |
| 00 00 00 00 00 👯         |      | 转转转转转                            | S        | ***                                   |  |
| 00 00 00 00 00 😫         |      | 动动动动动                            |          | 0 0 0 0 0 0 B                         |  |
| 發展發展發展                   |      | 动动动动 动                           |          | ***                                   |  |
| 00 00 00 00 00 <u>00</u> |      | ** ** ** ** **                   |          | ** ** ** ** ** **                     |  |
| e e e e e e e            |      | ***                              |          | ****                                  |  |
| 10 10 10 10 10 10 10     |      | 50 50 50 50 50                   |          | ****                                  |  |
| 25 25 25 25 25           | 2003 | 25 25 25 25 25                   | 2 2 2 2  | 25 25 25 25 25                        |  |

#### Systolic Architecture

Arranged in columns

### Tensor Slices: Modes, Sizes, Precision



Precisions: int8, int16, fp16, bf16

#### Tensor Slice: Compute Throughput and Area







Koios DL benchmark

#### **Tensor Slice: Frequency**







#### Tensor Slice: Deep Neural Network Overlay



Takeaway: An FPGA with Tensor Slices can achieve significant speedups on realistic DL networks, compared to commercial FPGA.





# New DL-optimized FPGA Blocks

DL-Specific Fabric Blocks: Compute RAMs (Vaughn)

## **Compute-In-Memory**

Also called Processing-In-Memory (PIM)

Bring computation closer to the storage

Reduces data movement, hence reducing energy and latency

Many flavors have been proposed:

 $\circ$  ReRAM based

- SRAM based Add compute to the Block RAMs on FPGA
- DRAM based
- 3D stacking based

### **Bit-Serial Computing**



Precision agnostic! Great for DL!

## **Bit-Line Computing**



### Adding Processing Elements inside a SRAM



Neural Cache [ISCA'18]

### What's the main principle here?

Get two bits (one from each operand), add them, write result back to the RAM

Two approaches:

Activate two wordlines at the same time



Robustness 😟



### Block RAMs on FPGAs are already dual ported! :)



## High Level Operation



## High Level Operation



## CoMeFa RAMs: High Level Operation



## CoMeFa RAMs: High Level Operation



## CoMeFa RAMs: High Level Operation



### **Design Space**

| <ul> <li>Getting 2 operands in 1 cycle</li> <li>Activating two wordlines</li> <li>Use dual ported memory</li> </ul>                                          | <ul> <li>Architecture of a PE</li> <li>Operations (add, logical, etc)</li> <li>Predication</li> <li>Configurability</li> </ul>                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Number of PEs and SAs</li> <li>PEs = SAs = Number of bitlines</li> <li>PEs = SAs = Number of data lines</li> <li>Or something in between</li> </ul> | <ul> <li>Loading and unloading data</li> <li>Transpose in soft logic</li> <li>Use RAM with transposable cells</li> <li>Transpose in DRAM controller</li> </ul> |
| <ul> <li>Programming the RAM</li> <li>Workload specific FSM</li> <li>Stored program</li> </ul>                                                               | <ul> <li>Signaling instructions to the RAM</li> <li>Write to a special address</li> <li>Repurpose a signal on the interface</li> </ul>                         |

167

### **Processing Element**



### One Operand Outside RAM (OOOR) Operations



### Programming the RAM



Harder to program Higher performance Easier to program Slightly reduced performance



### The BRAM has now become a SIMD processor

### Observation: Enhanced "effective" bandwidth

Internal (physical) geometry of the BRAM is more squarish than the "external" (logical) geometry

Example: Consider 16 Kilobit RAM

Logical geometries available: 512x32, 1024x16, 2048x8, 4906x4,...

Physical geometry: 128x128 (128 word lines, 128 bitlines)

Why is this done?

Physical layout issues (pitch matching), ECC, Routing interface limitations

Can access more number of bits inside the RAM (assuming we have enough sense amps)

#### Overhead

| PEs=SAs=# Bitlines<br>Activate two wordlines | PEs=SAs=# Bitlines<br>Use dual-ported'ness<br>More-configurable PE | PEs=SAs=# Datalines<br>Re-use (cycle) SAs<br>Use dual-ported'ness |
|----------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|
| Less-configurable PE                         |                                                                    | More-configurable PE                                              |
|                                              |                                                                    |                                                                   |

|                | CCB [1] | CoMeFa-D [2] | CoMeFa-A [2] |
|----------------|---------|--------------|--------------|
| Clock duration | 60%     | 25%          | 125%         |
| Area (block)   | 16.8%   | 25.4%        | 8.1%         |
| Area (chip)    | 2.5%    | 3.8%         | 1.2%         |

[1] X. Wang et al., "Compute-Capable Block RAMs for Efficient Deep Learning Acceleration on FPGAs," FCCM 2021

[2] Arora et al., "CoMeFa: Compute-in-Memory Blocks for FPGAs," FCCM 2022

## Compute Throughput (Mid-Size, Arria 10-Like)



#### Speedup - Microbenchmarks (8- to 20-bit precision)



### Speedup - DNN Overlay (NPU-Like)

4 Speedup (compared to baseline) 3 2 mlp tdarknet lstm resnet geomean gru

int8

int4

~2.5x speed-up at 4-bit, but only ~1.2x at 8-bit N<sup>2</sup> cycles for N-bit serial multiplication

# New DL-optimized FPGA Blocks

### Out-of-Fabric Blocks (Andrew)

#### Interposers



#### Interposers



### AI Targeted Chiplets

Stratix 10 uses interposer technology to integrate FPGA with transceiver chiplets


## AI Targeted Chiplets

Stratix 10 uses interposer technology to integrate FPGA with transceiver chiplets

What if we swap some/all with AI chiplets?



## **AI** Targeted Chiplets

Stratix 10 uses interposer technology to integrate FPGA with transceiver chiplets

What if we swap some/all with AI chiplets?



Intel Stratix 10

E. Nurvitadhi et al, "In-Package Domain-Specific ASICs for Intel Stratix 10 FPGAs: A Case Study of Accelerating Deep Learning using TensorTile ASIC", FPL, 2018

E. Nurvitadhi et al, "Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs", FCCM, 2019

## AI Targeted Chiplets

Stratix 10 uses interposer technology to integrate FPGA with transceiver chiplets

What if we swap some/all with AI chiplets?



E. Nurvitadhi et al, "In-Package Domain-Specific ASICs for Intel Stratix 10 FPGAs: A Case Study of Accelerating Deep Learning using TensorTile ASIC", FPL, 2018

E. Nurvitadhi et al, "Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs", FCCM, 2019

Intel Stratix 10

#### 

# It is getting harder to design & close timing for large FPGA systems &

Not all applications benefit from the **bit-level flexibility** of FPGAs

#### (1) Array of Specialized Vector Processors

Efficiently execute parallel workloads on SW-programmable cores with programmable bus-based routing between them



# It is getting harder to design & close timing for large FPGA systems &

#### Not all applications benefit from the **bit-level flexibility** of FPGAs

#### (1) Array of Specialized Vector Processors

Efficiently execute parallel workloads on SW-programmable cores with programmable bus-based routing between them

#### (2) System-level Packet-switched NoC -

Decouple compute & communication for easier system integration



# It is getting harder to design & close timing for large FPGA systems &

#### Not all applications benefit from the **bit-level flexibility** of FPGAs

#### (1) Array of Specialized Vector Processors

Efficiently execute parallel workloads on SW-programmable cores with programmable bus-based routing between them

(2) System-level Packet-switched NoC Decouple compute & communication for easier system integration





S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96



Can execute 7 simultaneous OPs 2 vec ld + 1 vec st + 1 vec op + 2 scalar ops Clocked at 1 GHz 128 INT8 MACs per clock  $\rightarrow$  **256 GOPS** Biggest device has 400 AIEs  $\rightarrow$  >100 TOPS



S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96

Each AI Engine can read/write directly to its 4 adjacent memory blocks (NSEW)



S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96

Each AI Engine can read/write directly to its 4 adjacent memory blocks (NSEW)

Hardware locks for sync between AIEs  $\rightarrow$  Memory block can act as ping-pong buffer between two pipelined AIEs



Each AI Engine can read/write directly to its 4 adjacent memory blocks (NSEW)

Hardware locks for sync between AIEs  $\rightarrow$  Memory block can act as ping-pong buffer between two pipelined AIEs

Bus-based reconfigurable routing  $\rightarrow$  AIE can can read/write data from/to the memory of any other AIE

 $\rightarrow$  Allows efficient broadcast / multicast



#### 

(1) Array of Specialized Vector Processors Efficiently execute parallel workloads on SW-programmable cores with programmable bus-based routing between them

#### (2) System-level Packet-switched NoC Decouple compute & communication for easier system integration



Modern FPGAs with many high-BW interfaces  $\rightarrow$  HBM/DDR, PCIe, Ethernet



Modern FPGAs with many high-BW interfaces  $\rightarrow$  HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules



Modern FPGAs with many high-BW interfaces  $\rightarrow$  HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication → between modules, modules ↔ hard blocks



Modern FPGAs with many high-BW interfaces  $\rightarrow$  HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication → between modules, modules ↔ hard blocks

Closing timing is a nightmare!  $\rightarrow$  esp. with long CAD runtimes



Modern FPGAs with many high-BW interfaces  $\rightarrow$  HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication → between modules, modules ↔ hard blocks

Closing timing is a nightmare!  $\rightarrow$  esp. with long CAD runtimes

#### Can't harden efficient busses because of the FPGA's reconfigurability!!



Modern FPGAs with many high-BW interfaces  $\rightarrow$  HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication → between modules, modules ↔ hard blocks

Closing timing is a nightmare!  $\rightarrow$  esp. with long CAD runtimes

#### **NoCs to the rescue!**

Easier timing closure Faster system integration More efficient communication



Many architecture questions ...

What are NoC specifications? How to connect to programmable routing? Soft vs. Hard links? Cost of embedding a hard NoC? How can applications benefit from it?

#### NoCs to the rescue!

Easier timing closure Faster system integration More efficient communication



#### Xilinx Versal NoC



- 128b NoC links @ 1GHz  $\rightarrow$  match DDR channel bandwidth
- Modified mesh topology (rows squished to top & bottom)  $\rightarrow$  match FPGA column layout
- **Only** way to access external memory from the FPGA fabric
- 10s -100s fabric ports to FPGA logic presented as standard AXI interfaces

I. Swarbrick and others, "Versal network-on-chip (NoC)" IEEE Symposium on High-Performance Interconnects (HOTI), 2019

# New DL-optimized FPGA Blocks

#### Beyond-FPGA Devices (Andrew)

#### The Rise of "Beyond-FPGA" Devices



Intel FPGA System-in-Package (Chiplets)



Xilinx Versal ACAP



Future 3D-Integrated Devices

#### The Rise of "Beyond-FPGA" Devices

## Reconfigurable Acceleration Devices (RADs)



Intel FPGA System-in-Package (Chiplets)



Xilinx Versal ACAP



Future 3D-Integrated Devices

## New Territories ... New Evaluation Tools!



## New Territories ... New Evaluation Tools!











## Summary

• FPGA architecture has always evolved to meet the needs of key markets ... DL is a big one!

- FPGA architecture has always evolved to meet the needs of key markets ... DL is a big one!
- Traditional blocks optimized for DL (logic blocks, DSPS)
  - Maintain FPGA generality
  - Achieve considerable gains at minimal cost

- FPGA architecture has always evolved to meet the needs of key markets ... DL is a big one!
- Traditional blocks optimized for DL (logic blocks, DSPS)
  - Maintain FPGA generality
  - Achieve considerable gains at minimal cost
- New DL-targeted blocks (tensor blocks, compute-in-BRAMs)
  - New class of specialized FPGAs for DL
  - Higher gains at a higher cost

- FPGA architecture has always evolved to meet the needs of key markets ... DL is a big one!
- Traditional blocks optimized for DL (logic blocks, DSPS)
  - Maintain FPGA generality
  - Achieve considerable gains at minimal cost
- New DL-targeted blocks (tensor blocks, compute-in-BRAMs)
  - New class of specialized FPGAs for DL
  - Higher gains at a higher cost
- Heterogeneous reconfigurable devices
  - $\circ \quad \text{Monolithic} \rightarrow \text{NoCs} + \text{coarse-grained accelerators}$
  - $\circ$  2.5D Integration  $\rightarrow$  DL chiplets
  - 3D Integration?

## Thanks!
VTR: <u>https://github.com/verilog-to-routing/vtr-verilog-to-routing</u>

COFFE: <a href="https://github.com/vaughnbetz/COFFE">https://github.com/vaughnbetz/COFFE</a>

Koios: https://tinyurl.com/vtrkoios

EB benchmark framework:

E. Roorda, S. Rasoulinezhad, P. H. W. Leong, and S. J. E. Wilton, "FPGA Architecture Exploration for DNN Acceleration", ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, May 2022. [Online]. Available: <u>https://doi.org/10.1145/3503465</u>

- A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18, doi:10.1109/FPL.2018.00014.
- S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19, doi:10.1109/FCCM.2019.00015.

https://github.com/raminrasoulinezhad/PIR-DSP

• Aman Arora *et al.*, "Tensor Slices: FPGA Building Blocks For The Deep Learning Era," ACM TRETS (Dec 2022), <u>doi.org/10.1145/3529650</u>.

• A. Boutros *et al.*, "Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs," *International Conference on Field-Programmable Technology (ICFPT)*, 2020, pp. 10-19, <u>doi:10.1109/ICFPT51103.2020.00011.</u>

• Seyedramin Rasoulinezhad *et al.*, "Rethinking embedded blocks for machine learning applications," *ACM TRETS*, (Nov 2021) <u>doi:10.1145/3491234</u>. <u>http://github.com/raminrasoulinezhad/MLBlocks</u>

#### Neural Cache

C. Eckert *et al.*, "Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), 2018, pp. 383-396, doi: 10.1109/ISCA.2018.00040.

#### CCB

X. Wang et al., "Compute-Capable Block RAMs for Efficient Deep Learning Acceleration on FPGAs," 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2021, pp. 88-96, doi: 10.1109/FCCM51124.2021.00018.

#### CoMeFa

A. Arora et al., "CoMeFa: Compute-in-Memory Blocks for FPGAs," 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2022, pp. 1-9, doi: 10.1109/FCCM53951.2022.9786179.