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Raise your hand if you have used an FPGA for accelerating a
deep learning (DL) workload



Raise your hand if you have used a new DL-optimized FPGA
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Keep it interactive

Come say hi during breaks
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FPGA Architecture Through a DL Lens




FPGA
Architecture
Through a DL
Lens

FPGA Architecture, DL
Implications and
Opportunities

(Vaughn)
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Deep Learning Inference — Becoming Ubiquitous




Energy Efficiency and Latency Matter

Chevy Bolt
~6 kW in city

Nvidia Drive AGX
Pegasus (2022)
750W

Low inference latency
crucial for safety!

Key metric is
Perf/ W/ $

Power is ~30% of
cost

~6% of global electricity demand
by 2030 11

Low inference latency enables cascade of Al
algorithms + networking!
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[1] N. Jones. “How to Stop Data Centres from Gobbling up the World’s Electricity”. In: Nature 2018



FPGA Architecture (through a DL Lens) from 300 m

1. What are the key building blocks of FPGAs?

2. How do they create strengths & challenges for Deep Learning?

3. Opportunities to create DL-optimized architectures

13



FPGA Architecture 101

K inputs

Basic Logic Element (BLE)

Any function of K or fewer
inputs, or a 1 bit adder

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
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FPGA Architecture 101 elk
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A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
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A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
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Prog. Logic & Routing Strength 1: Variable Precision

Can program to realize hardware of any bit width

e N-bit adder: ~N LEs SRR S|
e N-bit multiplier: ~N? LEs il

e DL tolerant of low precision
e No one best precision for all networks and all layers
e Use lowest precision that meets accuracy needs for each network / layer

— No need to pick from a limited group of precisions or numeric formats

18



Leveraging Variable Precision: Microsoft Brainwave

FPGA Performance vs. Data Type

100 : 90
~o-Stratix V D5 @ 225MHz

-@-Stratix 10 280 @ 500MHz

Accuracy vs. Precision
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= 20 0.60
_‘ 0.50

0 ‘ . . Model 1 Model 2 Model 3

(GRU-based) (LSTM-based) (LSTM-based)

16'blt Int 8'b|t Int ms-fp9 mS'fpS m float32 mms-fp9 m ms-fp9retrain

Small, custom floating point: 7x performance

No accuracy loss at (retrained) custom 9-bit floating point

19
Figures from [E. Chung et al, “Accelerating Persistent Neural Networks at Datacenter Scale,” Hot Chips 2017]



Prog. Logic & Routing Strength 2: Spatial Compute Energy

Can reprogram FPGA to implement exact hardware needed by network

e Programmable routing: directly wire data from one unit to another
e Programmable logic: perform only necessary operation, w/o instruction stream
— Large power / efficiency gains possible

45 nm CPU energy breakdown [from M. Horowitz, “Computing’s Energy
Problem,” ISSCC, 2014].

! T T

|-Cache Access Register File Add

Access 0.03 pJ for 8-bit int add
0.9 pJ for 32-bit fp add 20



Prog. Logic & Routing Weakness: Area & Delay Overhead

e Programmability not free!
e LEs and programmable routing larger & slower than gates & wires
o Average: ~25 - 30x larger and ~3x slower!
e How to mitigate?
o Implement common functions in hardened blocks
o Less programmable but built with gates (like an ASIC)
o Example: DSP blocks for larger multiply-accumulate
e Opportunity 1
o Can we make LEs themselves more efficient for DL operations?

A. Boutros, S. Yazdanshenas and V. Betz, “You Can't Improve What You Don’t Measure: FPGA vs. ASIC Efficiency Gaps for Convolutional Neural 21
Network Inference,” ACM TRETS, Dec. 2018, pp. 20:1 — 20:23.



Hard Block Example: DSP Blocks

18x18

H—2 9

25x more dense & 3x faster?
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Hard Blocks: Programmable Routing Impact
18x18
0?’ I
- PN
N\ N\
N
s r

N
e New block — Needs muxes to/from programmable routing wires

e Column of blocks — Another channel of programmable routing

e Programmable Routing Area oc BlockinIO . T Block

ut outputs



Hard Blocks: Add Low-Cost Programmability
18x18
° ol
-
— PN
A £
N
s r
N

e MAC — multiply or MAC
e Register inputs & outputs — Optional registering
e 18-bit FIR filters: 6X - 8X density & 2X - 2.5X speed vs. LE-implementation

24
A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
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Block RAM

RAM
Blocks

e Thousands of independent

RAM blocks, spatially distributed
e Best size?
o Trade-off: larger blocks lead to
lower area/bit
o Smaller blocks let you fit more
RAM blocks & bandwidth in chip
o ~20 kb /block a common choice




Strength 4: Flexible Memory — Low Latency Deep

Huge flexibility in combining RAMs with programmable logic & routing

Narrow &

e Different for each layer = X =) &%
e Custom scatter/gather can exploit sparsity i
=R
Independent
Massive bandwidth
e ~PbJs of on-chip bandwidth, split into 10,000+ components Shallow

Can keep compute units fed with little or no batching if most/all data on chip
e GPUs batch multiple inputs to amortize weight re-loading — latency increase

Challenge: very large networks need off-chip memory — weakens advantage

27




Op switch

Block RAM: Under the Hood

Unique feature: RAM Wide vs. Deep Config
configurable width/depth '

e Increases flexibility g m E
e E.g. 18k words x 1b = . ™ %ﬁ <
or 512 words x 36b = - s o :‘;
2| WL3a ® \"\ 3
Opportunlty 3: | Read/Write Circtii’trya-l _ ‘:L ﬁ il §
7 : —Blo < 4 BL:NLA "L wen = é

\ » T L
e Tens of thousands of RAMs /\ o p———— Qrm;

e Can connect to anything BL, @ Dual Port

e Can we add in-memory ProgRr:l:nﬁr:;ble SRAM Core

processing cheaply?

28
A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
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Strength 5: Low Latency, Highly Flexible 1/0O

HW accelerated, low latency

Myriad 1/O options: DDRS, PCle, Ethernet, custom standards, ...

Datacenter: scale in space

FPGA 1

100 Gb

Conv2D MaxPool
Etherne

Conv2D
RelLU H Add
Conv2D

FPGA 2

Embedded: low latency & custom I/O

Custom

I/0

Preprocess
mma & Feature
Extract




Recent Developments: NoCs, Embedded Accelerators

Spatial Vector Processor Array

[ve] [ve] [vel

Transceivers

Scalar Processor
Subsystem

Security and Config.

Achronix Speedster 7t Xilinx Versal

Efficient system-level interconnect for (high bandwidth) 1/O to prog. fabric

Opportunity 4: easier to integrate coarse-grained / novel accelerators

31



FPGA
Architecture
Through a DL
Lens

Strengths & Weaknesses vs. DL

Application Attributes
(Vaughn)

32



Deep Learning Attributes and FPGAs

Characteristic
Precision Low High
Sparse Weights? Yes: Efficient with custom No: still efficient, but less
memory & hw scatter-gather opportunity for customization
Latency Tight Loose: batching can help GPU
Constraint efficiency

Network Size

Moderate: on-chip memory
stores much of network

Very large: Off-chip memory
interfaces most important

Phase

Inference

Training

Network Changes

Rare

Frequent: Some accelerator styles
will reduce developer productivity

33
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FPGA DL Accelerators and Architectures




FPGA DL
Accelerators and
Architectures

Styles of Accelerating DL

using FPGAs
(Andrew)
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DL Acceleration Styles on FPGAs

Generality

- Efficiency

37



DL Acceleration Styles on FPGAs

Generality

A

A

Offload specific operations from host to
FPGA (e.g. GEMM, Convolution)

Layer/Operation
A Engines

Efficiency

38



DL Acceleration Styles on FPGAs

Generality

A

Accelerate a specific NN
completely on FPGA

Model-Specific
Accelerators

Layer/Operation
A Engines

- Efficiency

39
H. Li et al, “A High Performance FPGA-based Accelerator for Large-Scale Convolutional Neural Networks”, FPL 2016



DNN Graph in DNN Graph optimized Design specified in Verilog Design and

. Modern Framework for inference Hardware IR (Spatial) C++ Host Program
N DNN Graph | Specify DNN Hardware Architecture | Target-specific | (compile | = azon
¥ 2 Optimization - Algorithm | [ Assign operations to optimizations | || Design | | _ oo
TensorFlow )| Run scripts that i “:e aVers | selection hardware (determine Generate HDL [ Vivado, 1 £ XILINX.
(or other use TensorFlow M m:grser for fused level of specialization, using area / gec 1"/ (or other
frameworks))  \ APl and utilities operations | | operations | select parallelizations) | | timing models | | FPGAs)
InputDNN  Optimization Level 1 Optimization Level 2 Optimization Level 3 Deploy

‘Supplied by Deep Learning Expert

"""" Domain-specific

precisions file
Layer Int Frac.
0 4 1

Generalit By = i
N y DSP ';arget: HPIPE Veril(;; s com p| | ers
500 Compiler
’ ’ § DL Framework — FPGAs

ConvNet Hardware
SDF Model
P

1 Optimiser
Custom HW
Pruned i

TensorFlow Graph B ]\éemf)ry . ,m;/_“ﬁ'V( G e n e rato rS

\_fpgaConvNet

\ Xilinx Tools
Vivado HLS \

(Voo )

D N
Bitstream Sw Binary

Model-Specific
Accelerators

Layer/Operation
A Engines

- Efficiency

X. Zhang et al, “DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs”, ICCAD, 2018
M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020 40

S. Hadjis et al, “TensorFlow to Cloud FPGAs: Tradeoffs for Accelerating Deep Neural Networks"”, FPL 2019


https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=jKD0LmMAAAAJ&citation_for_view=jKD0LmMAAAAJ:LkGwnXOMwfcC

nnnnnnn ion
ce

DL Acceleration Styles on FPGAs

Sequen:

Compiler

e — ¢ SW-programmable processors with

Generality . custom ISA & HW

A

Overlays

+ (Soft Processors) Custom HW
Generators

Model-Specific
Accelerators

Layer/Operation
A Engines

- Efficiency

A. Boutros et al, “Beyond Peak Performance: Comparing the Real Performance of Al-Optimized FPGAs and GPUs", FPT 2020
Y. Yu et al, “OPU: An FPGA-Based Overlay Processor for Convolutional Neural Networks"”, TVLSI 2020
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Two Key Challenges for Accelerating DL using FPGAs ...

Generality

Layer/Operation
A Engines

Overlays

(Soft Processors) Custom HW
Generators

Model-Specific
Accelerators

- Efficiency

42



Two Key Challenges for Accelerating DL using FPGAs ...

The Overhead of :
- Ease of Programming
Reconfigurability
Can we achieve competitive Al inference How to make FPGAs accessible for Al
performance on FPGAs? application developers?

Efficiency

43



Two Key Challenges for Accelerating DL using FPGAs ...

|

Overlays

(Soft Processors) Custom HW
Generators

The Overhead of :
Ease of Programming

Reconfigurability
Can we achieve competitive Al inference How to make FPGAs accessible for Al
performance on FPGAs? application developers?

Will show two examples from these two design styles & how they can
address these concerns

44



Design Approach 1

Custom HW Generators
(HPIPE)



Design Philosophy

Commonly — Temporal mapping on PE arrays

e Sequential processing of layers
e PEs handle any layer — lower efficiency

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020

Conv2D 7x7,
stride 2

Buffer




Design Philosophy

Commonly — Temporal mapping on PE arrays

e Sequential processing of layers
e PEs handle any layer — lower efficiency

Instead — Spatial mapping to specialized units

e Per-layer custom HW — higher efficiency
e Exploit pipeline parallelism

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020

Conv2D 7x7,
stride 2

9

'

T

PE

5

PE

T

Buffer

Conv2D 7x7,

stride 2

9

g

PE

PE
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Mobilenet-V1+SSD Layers

i

Conv2D_16

Design Philosophy

Commonly — Temporal mapping on PE arrays

e Sequential processing of layers
e PEs handle any layer — lower efficiency

Instead — Spatial mapping to specialized units

IR IANE L

e Per-layer custom HW — higher efficiency
e Exploit pipeline parallelism

InputLayer,

¥ ,L-..., bl | |
Intel Stratix-10 GX2800

48

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020



Design Philosophy

Commonly — Temporal mapping on PE arrays

e Sequential processing of layers §
e PEs handle any layer — lower efficiency Very efficient but ...

requires a new
implementation for

|
Instead — Spatial mapping to specialized units each model!

e Per-layer custom HW — higher efficiency
e Exploit pipeline parallelism

49
M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020



Auto Generation of Custom CNN HW (HPIPE)

HW Specifications TensorFIqw.ModeI
Description
[ |
Graph Optimization r-1---~Fuse layers for more efficient implementations
' L :
, A pipeline is as slow as its slowest stage
Resource Allocation [-1---~ ) )
i Balance layer throughput to increase efficiency
RTL Generation ______,Ger)ergte HW implementation from highly
optimized layer templates
HPIPE
FPGA Bitstream

50
. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation®“, FPT 2020



ResNet-50 Results (Conventional Stratix 10 FPGA)

 HPIPE (Ours), B=1
e 4x higher batch-1 throughput vs. 2 4000
V100 GPU at similar (low) latency z s
i 3000 1
e 1.4x higher batch-8 throughput vs. Ef%
V100 GPU at 2x lower latency £ 2000
‘go _— V100, B=1
=
04 .
0 2 4 6

Latency (ms)

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020
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MobileNet-V2 Results (Al-Optimized Stratix 10 FPGA)

- Nvidia V100 --HPIPE (S10-NX)

. MobileNet-V2
Q 30k} =
e 17x higher batch-1 throughput vs. @ 25K | ¢ B= 128
V100 GPU at lower latency E ‘

e 1.3x higher batch-128 throughput
vs. V100 GPU at 3x lower latency

Latency (ms)

52
M. Stan et al, “HPIPE NX: Boosting CNN Inference Acceleration Performance with Al-Optimized FPGAs", Under Review



Design Approach 2

FPGA Overlays
(NPU)

53



Overlay Design Flow

Traditional Flow

Applications H

Implement in RTL

A 4

N FPGA CAD Tools

Perf?

Y
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Traditional Flow

Applications H

|

4

Implement in RTL

N FPGA CAD Tools

Perf?

Y

HW Experts

i 1
Overlay Design Flow  S@&
- Overlay Flow

&

Domain
Requirements

-

Design HW/SW
Contract (ISA)

A

Develop SW Toolchain

Qs

I

Applications

l

Implement in SW

4

Develop overlay via
traditional flow

I

Overlay Compiler
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Neural Processing Unit (NPU)

Very Long Instruction Word (VLIW) soft processor - 5 coarse grained stages
Amortize control — Single instruction executes 45,000 operations
Customize memory subsystem — Exploit tremendous on-chip memory BW
Targeting memory-bound models (MLPs, RNNs, GRUs, LSTMs)

RNN_Step (Wh, Wx, H_prev):
I : 1 T T T 1 i = get_new_input ()
4 _ v 2 vV v H = matvec (Wx, Invec) OITIN
URE M o VRF VRF || VRF VRF (| VRF i = matvec (Wh, H prev)
— L = L\ K13 : | = tanh(pl + p2) Ly
mm ACCI §:+ g L =g § § H at1 H prev.
MRF | DPE || AccI (& = 1 e NPU Program in DSL N
o A
MRF | DPE H Acc 3 +}_’ £ < | < m::
MRF | DPE ][ Acc | 5 E
it 1N -\ =~ I v -Uo [N o B (o
il : : : : QUARTUS:
B : Y s PRIME
MVU B Instruction Decode and Dispatch Unit | S

NPU Overla

56

A. Boutros et al, “Beyond Peak Performance: Comparing the Real Performance of Al-Optimized FPGAs and GPUs", FPT 2020



Results vs. Same-Generation DL-Optimized GPUs

Al-Optimized FPGA
with Tensor Blocks

Nvidia V100 Nvidia T4 Intel S10 NX €—

On-chip Memory 16 MB 10 MB 16 MB . I

Process Tech. TSMC 120m  TSMC 12nm  Intel 14nm (More details later!)

Die Size (mm?) 815 545 < 500
g40 75
| # T4 @ V100 & NPU (S10-NX)
.§30-
Sosl 11xvs. V100
(o)
£20 23xvs. T4
%
2 15)
$ ol
8
E 5|
(e}
Z 0

P > Qb Qb v o> , <b 5b , P 2 5 5
@'\ @;\QQ’ Q;\‘\ib @ Q’ GJ‘\ 0 '\ 0.)(5 ’\Q’q, \"b Q‘bb‘ 4,0'
‘b 3 tb &°
o*’c,@o@“‘o@ee @’®3§§§§§ “@C’
Workload
57

A. Boutros et al, “Beyond Peak Performance: Comparing the Real Performance of Al-Optimized FPGAs and GPUs", FPT 2020



Can current FPGAs achieve good DL inference performance?
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Can current FPGAs achieve good DL inference performance?
YES!

Automatic custom HW generation — HPIPE
Software-programmable Overlays — NPU
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Can current FPGAs achieve good DL inference performance?
YES!

Automatic custom HW generation — HPIPE
Software-programmable Overlays — NPU

Can we make current FPGAs easier to use for DL application developers?
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Can current FPGAs achieve good DL inference performance?
YES!

Automatic custom HW generation — HPIPE
Software-programmable Overlays — NPU

Can we make current FPGAs easier to use for DL application developers?
YES!

Tensorflow to LUTs & wires — compile new bitstream for each model
Program purely in software — run instructions on a single optimized bitstream
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Can current FPGAs achieve good DL inference performance?
YES!

Automatic custom HW generation — HPIPE
Software-programmable Overlays — NPU

Can we make current FPGAs easier to use for DL application developers?
YES!

Tensorflow to LUTs & wires — compile new bitstream for each model
Program purely in software — run instructions on a single optimized bitstream

Both performance and ease-of-use can also be improved by
enhancing underlying FPGA architecture for DL use cases ...
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FPGA DL
Accelerators and
Architectures

Architecture Exploration

of DL-Optimized FPGAs
(Vaughn)
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FPGA Architecture Research

FPGA
Architecture Benchmarks
Model ‘ ‘

A 4

Area,

Frequency,
Power
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FPGA Architecture Research

FPGA
Architecture Benchmarks
#1

Area,

Frequency, Compare

Power

FPGA
Architecture
H2

Area,
Frequency,
Power

IS
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: _ i, ‘
VTR (Verilog to Routing) »

9

Area,
Frequency,

Verilog Circuits J Power

'

Elaboration

'

~ ODIN or Yosys followed by ABC

[ Synthesis & Tech Map J

'

FPGA
Architecture
Description
File

Packing

'

Placement

> VPR

=
o
e
=4
=]
oQ

Timing & Area Estimation J

'

Reports
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VTR (Verilog to Routing)

Verilog Circuits J

'

Elaboration

'

Synthesis & Tech Map

'

FPGA :
Architecture ‘ Packin

'

Description
File

Placement

:

Routing

:

)
)
°
o
~+
n

Timing & Area Estimation /

Think Xilinx/AMD Vivado
or Altera/Intel Quartus

But...

For an FPGA described in
the file

And

No bitstream generation
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FPGA Architecture Model

Blocks

Number and type of blocks

Layout of blocks on the FPGA
Routing

Distribution of wire segments

Types of switches
Configuration circuitry

If you need to experiment with it

68



FPGA Architecture Model in VTR

R_minW_nmos="8926" R_minW_pmos="16067"/>

grid logic_tile_ area="0"/>

>
distr="uniform™ peak="1.000000"/>
distr="uniform™ peak="1.000000"/>

>
> < type="wilton" fs="3"/>
name="mult 36" height="6" area="396000"> input_switch_name="ipin_cblock"/>
>

name="io"™ capacity="8" a

>

name="clb" area="53894">

>

name="memory"” height="2" area="548000">

name="clb">
name="fle"™ num_pb="10">

"

name="1 num_pins="6"/>

aspect_ratio="1.0"> e num_pl?s= i
name="out" num_pins="2%/>

<perimeter type="io"™ priority="100"/>
<fill type="clb"™ priority="10"/> name="cout™ num_pins="1"/>
<col type="mult 36" startx="4" starty="1" repeatx="8" priority="20"/> name="clk" num_pins="1"/>
<col type="memory"” startx="2" starty="1" repeatx="8" priority="20"/>

s name="n1_lut6™>




How do you create an FPGA architecture model?

a A

Start from already
existing ones in
VTR

-

(& /

Capture the
architecture
attributes from
existing FPGAs

N

a

Model it yourself
using CAD tools
like COFFE

-

N

4
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FPGA
Architecture
Model

CAD

FPGA Benchmark Suites

9

Area,
Frequency,
Power

MCNC20
UMass RCG v -
Groundhog -
ERCBench -
VTR

Titan

]

S (N O

SN X

N OO

) O s O o R

Koios
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Koios — The Titan of Intelligence

A DL-specific benchmark suite for FPGA research

40 benchmarks that cover a diverse representative space

Open-source and works with VTR

Contains original designs, and designs re-created from prior works

Suitable for DL-specific FPGA architecture exploration and CAD research

Arora et al., Koios: A Deep Learning Benchmark Suite for FPGA Architecture and CAD Research, FPL'21



The Koios Benchmark Suite

Implementation
Style

Design Size

Acceleration Numerical
Paradigm Precisions

Target Neural
Network

Circuit Properties
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Case Study - Let's add a new block for DL

How much FPGA die area should
be dedicated to it?

Specificity Generality
What is the impact on _
. Only few applications Capture more usecases
programmable routing?
Smaller, faster and Larger area and reduced
\What functionality should be more power-efficient efficiency for specific

application

hardened? Waste Si area if not

used

How flexible should that block be?
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Case Study - Let's add a new block for DL

Write RTL model

Use COFFE

Functionality, including
programmable modes

Implements core with
standard cells &
programmable routing
with full custom

— Speed & Area
— VTR-compatible model
of block

Add new block to a full
VTR architecture

Use a benchmark suite
like Koios

Area/timing/routability for
new architecture

75



FPGA DL Taxonomy of

Accelerators and =~ PL-optimized FPGA
: Architectures
Architectures (Vaughn)



What can we improve?
000000 Chaooooos

] O
] ; H
[] ] =
O I _
L] Logic A /“ k%: S
L] N 0
O
e
O

0 R € | ¢

STTH ©

Pr / 8 =
B>> |3§' Processor 8 B
g Subsystem| a |0

D D D D Ooo0o0oooooooooao

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
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We are changing the architecture of the FPGA itself
E.g. changing the size of a LUT in a logic block

Not the design configured/programmed into the FPGA

E.g. designing a Brainwave like accelerator for an existing FPGA
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What can we change?

Change existing blocks

=

5 ==

Change LBs

Change DSPs

Change BRAMs

i o ) v v i I i i o i e iy f i

i
]
i
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I
i
d
i
i
I
i
]
8
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What can we change?

Add new in-fabric blocks
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What can we change?

Add new blocks outside the fabric
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What can we change?

Add new chiplets within a package
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Taxonomy

Logic Hard DL-Specific Out-of-Fabric On-Package
Blocks Blocks Fabric Blocks Blocks Blocks
Soft MAC  Low-prec Tensor Block Al Engines Tensor Tile
DSP Tensor Slices
C-RAMs

< On-die > < On-package

< In-fabric D ¢ Out-of-fabric

< Traditional > < New

<Fine-grained> < Coarse-grained

AV VAR
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Through a DL
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Traditional FPGA Blocks for D

I;




Traditional FPGA Logic Blocks
Blocks for DL (Andrew)



Good News for FPGAs ... Low-Precision DL Inference

DL is resilient against noise/approximations
— Use low precision MACs for inference

16325426272 = 1.633

“It is a cat anyway”

Many techniques to enable INT8/INT4 calculations with no accuracy loss
Can sacrifice a bit of accuracy by going down to ternary/binary networks

Good news for FPGAs — Can implement custom precisions efficiently!
88



Looking at Conventional FPGA Architectures ...
O000O0000O00O0OOooOoOooOooon

OO0O0O00O0O00O0O000O0O00O00O0O0
OO0O0O00O0O00O00000O000O000.

OO00O00O000000O000000000

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
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... LEs are the most common blocks in an FPGA

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression."

90
IEEE Circuits and Systems Magazine 21.2 (2021): 4-29



... LEs are the most common blocks in an FPGA

How well can these Logic Elements
implement low precision MACs?

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
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Deeper Look into a Modern FPGA Logic Element

E

D

Ol
A

B
04

T Q

4-LUT

4-LUT
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D

4-LUT

4-LUT

APy T4

o A
4[ j&UT B
6-LUT | A

7

> |
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Deeper Look into a Modern FPGA Logic Element

8 distinct
inputs
A—H

Ol

O4

4-LUT

4-LUT

4-LUT

T Q

4-LUT

A—N Y

o A
4[ j&UT B
6-LUT | A
M _{\ ]
oo | — DT,
4D5-LUT A

93



Deeper Look into a Modern FPGA Logic Element

4-LUT

4 optionally
registered
outputs

8 distinct il jj

4-LUT

inputs 5
A—H 04 :Ij

4-LUT

01-04

6-LUT |

4-LUT
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Deeper Look into a Modern FPGA Logic Element

8 distinct il jj

inputs 5
A—H 04 :D

N\ 2 bits of arithmetic
C, fed by LUTs
>, \ A_\ W
+) - A
4-LUT 4[17 —
6-LUT | A
4-LUT _DﬁUT $ ]
) N N
+) B B
4-LUT \ ) 4D - &
\e/
\J/

4 optionally
registered
outputs

01-04
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Deeper Look into a Modern FPGA Logic Element

2 bits of arithmetic

4-LUT

4-LUT

>

. o1
8 distinct =y
inputs 5

A—>H 04 _l/

4-LUT

4-LUT

j_,

>

-

T Q

C, fed by LUTs
o~ =k
4[ jﬁUT B

6-LUT | A

__DHUT @ ]

B —
| 4D5-LUT &

4 optionally
registered
outputs

01-04

(0!

02

03
Can implement:

4-in logic—Add
04
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Deeper Look into a Modern FPGA Logic Element

2 bits of arithmetic

4-LUT

8 distinct ~ © jj%_

inputs

AsH o] —

4-LUT

4 optionally
fed by LUTs registered
tputs
AN nEy o
P AT 0104
/E I [] bo2
eror| B
03

Can implement:

4-in logic—Add
04

>3

2x 5-in logic
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Deeper Look into a Modern FPGA Logic Element

8 distinct
inputs
A—H

4-LUT

4-LUT

4-LUT

2 bits of arithmetic
fed by LUTs
A—DN T
1 A r}
e -
L o
. [T
5-LUT ’_1) A
B
j5-LUT A j_’

4 optionally
registered
outputs

01-04

(0!

02

>

03
Can implement:

o 4-in logic—Add
2x 5-in logic

1x 6-in logic
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Back to Grade 3 Maths ...

OX®DO
@

Inputs
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Back to Grade 3 Maths ...

® ® @ C.> Inputs
® g 5 8 ‘ Generate Partial
® g % 8 O (P,Atl(zli:gztes)
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Back to Grade 3 Maths ...

OX®DO

@

00S O
OX®DO
OX®DO

OX®DO

OO0 0
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Inputs

Generate Partial
Products

(AND Gates)

Reduce Partial
Products



Back to Grade 3 Maths ...

OX®DO
@

O

CI0DR®

®
D0
O
o

4:J7%
O1PRD

0
AAAAAO

0000060

Inputs

Generate Partial
Products

(AND Gates)

Reduce Partial
Products

Final Output



How is it mapped?

DO @

EXelge
5>®
‘oo
o3>®

DO

[ Opo
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[ ®>®

Qe

C®®
(N
BN
[+

RO

| ®>®
S8
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Qe
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How is it mapped?

DO @

Qe

DO

R

O®BO
®

0990

DO
DO
N )

QOO0 90
0000000

[ J@) - @

e

@) >0
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O®BO

®O
@0
o8O0

How is it mapped?
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4-input LUT used to implement 2-input AND
How is it mapped? / Some LEs only used for adders

' X X¢)

DO @
DO

Qe
RO
o> ob

> D>
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3 Suggested ldeas

Idea 1: Add a 2nd
carry chain

4-LUT

4-LUT

4-LUT

4-LUT

More efficient adder
compressor trees

M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020 107



Idea 2: Add more
adders in the chain

3 Suggested ldeas

Idea 1: Add a 2nd
carry chain — L
Y 3-LUT ::(-I-

4-LUT 3-LUT
j:(+ H—+ 3-LUT

4-LUT
3-LUT

4-LUT
P 'B N 3-LUT
4-LUT ::::( 3-LUT
3-LUT

More efficient adder Denser arithmetic
compressor trees in general

M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020
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Idea 2: Add more Idea 3: Add shadow

3 Suggested Ideas  ,4gers in the chain clurgtuel:i‘,p(lzzssteo I:)Ets)
Idea 1: Add a 2nd P

carry chain STUT P Rerre B N
8 4

3-LUT

S ior @

4-LUT
3-LUT
4-LUT j:EHi"
3-LUT
. Al
4-LUT 3-LUT

Local Interconnect

:D—»
SLUT
More efficient adder Denser arithmetic  Denser multiplies vs.
compressor trees in general implementing in LEs

M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020 109



Results

Low Cost Change: 4-bit chain (1dea 2)
1.5x denser + 10% faster
Also benefits other non-DL applications
3% die area increase

High Gain Change: 9-bit Shadow Multipliers (idea 3)
2.4x denser + 17% faster
12% die area increase

110
M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020



It's all about Adders ...

®®€BC.)
esee _"MVACs
ORPO Sum partial
O®DO products to get
OO final output
CO00000
AAAAAO

00000000

In Binary NNs
Sum XNOR
outputs to get
final output

Weights {-1,1}

EERCN a
OCOmO OJ
BRI XNOR I Popcount
OO0 O]

iy § | :)Do_ O] Z
mOOo a
EECN a
OmOO O]

Inputs {-1,1}
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It's all about Adders ...

CRPO Weights {-1,1} Inputs {-1,1}
o i EECE - O
YYY In MACs In Binary NNs om0 O O
0®®0 Sum partial Sum XNOR E:%g XNOR E Repoae E
oSO products to get outputstoget Omm D O 2 ]
ORSO final output final output WOODO - ]
OCO0000 EECE - O
AAAAAO ] I [] ]
00000000 o
In the previous ideas, we add more full adders to FPGA LEs ... o
_ e

Full adders: 3 in — 2 bits (1 same significance + 1 higher order)

112



It's all about Adders ...

CRPO Weights {-1,1} Inputs {-1,1}
o i EECE - O
YYY In MACs In Binary NNs OOomO ] ]
O0R®0 Sum partial Sum XNOR E:gg XNOR E Popcount E
O®PO products to get outputstoget OOomm D ] 2 ]
OO final output final output WOODO = ]
OCO0000 EECE - O
AAAAAO ] I [] ]

00000000

o o
In the previous ideas, we add more full adders to FPGA LEs ... o o
Full adders: 3 in — 2 bits (1 same significance + 1 higher order) % :
C3:11 [
In many cases, we need to add more than 3 bits ®
Compressors: N in — M bits 000

C6:111
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Compressors are important ...

Generalized parallel counters/adders (i.e. compressors) are not
efficientwhen mapped to FPGA LEs

0 Il Total Use Count .

® Cost (Number of LEs) o

Across many microbenchmarks o ®
>35% of compressors are C6:111 §f§ :
Most expensive on FPGAs Mg ®

C6:111

Can we improve efficiency with minimal additions to FPGA LEs?

S. Rasoulinezhad and others, "LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implementations”, FPGA, 2020
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6-Input XOR gate sharing (expensive) LE inputs

A:B,CO,DO,E,F l[:
= LUT-4 )]l " N
) 4;7 — ) r )
D LUT-4 [L\
= )/
[l LuT-4 ]
c1 —D ] —I_h 0—?~
v +\ FF o2
2 ] —D | Luta ~ T v = %
L | = N
—I\ L} ;D . T 03
v | | s —)

115
S. Rasoulinezhad and others, "LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implementations”, FPGA, 2020



6-Input XOR gate sharing (expensive) LE inputs

LUT-4 )]l " N
DN ualiTiir=

+ v
D LUT-4 ~ E\
% _I]— = |/
N (] LuT4 D
L LN

v +\ —I__h - o2
——D | LUT4 -~ T V - [H)
—_ J_ FF __\
D = |

< 0.5°/omarea overhead
Up to 36% denser compressor implementations

116
S. Rasoulinezhad and others, "LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implementations”, FPGA, 2020



Traditional FPGA DSP Blocks
Blocks for DL (Andrew)



Traditional FPGA DSPs

—  19x18 — :'v": —

18x27

]

.
:0—».»: ]?q# o )R REa
ZQ— 19 18 =

= <t} i S 11!

Intel DSP blocks (19x18 and 27x27 modes) Xilinx DSP block

e Optimized for wireless communication & filtering
o Intel — 2x18b or 1x27b multiplication
o Xilinx — 1x 18x27

e (Can do better if we care about low-precision MACs
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Key Design Goals

e Backward compatibility
o Usable for other applications

e Ideally no effect on block frequency
o No negative impact on non-DL designs

e Do not add (relatively expensive) routing ports
o Avoid large area cost
o Avoid potential routing hotspots

119



- 18x18 9x9 9x18 9x18
More Fracturabillity ... i@ w@® wE w)
e Support traditional modes (27x27,18x18) @j S1<<9 |
e Add new low-precision modes [85:9]
m  4x 9b multiply/MAC [53:36] /7 [ 42c1@2m) |80 §
m  8x 4b multiply/MAC I ‘ 5
Keeping it low-cost is key ... £ | 4:2 C2 (54b) |
e No additional routing ports §| __________ : 4:2 C3 (64b) ﬂ:
e Max reuse of existing multiplier arrays | foa o i
zi: T | _CPA(36b) || CPA (36b) |
ﬁc\ Flexible | | | L bommmeee y T
%/ y i | D> Output Registers |
I_ ' 120

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18



Low Area Overhead
Block area overhead:

12 (yo E‘SP“

which is equivalent to

~0.6% 2

Area
in DSP-rich devices

. and runs at the same frequency

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18



Application-level Results

3 CNNs on 2 accelerator
architectures

1.3x:% 15%

in case of 8-bit precision

Higher 0 Les§
1 g 6X Perf. 30 A) Logie
in case of 4-bit precision

Input
Buffer

Input
Buffer

Input
Buffer

Data Re-use Shift Register Network

Weight

Buffers
[T
[T
——> MAC
—>1
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| mac - N - AN R
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LL__1 5L NORM [ L. &&
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>
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| Mmac T

ASU CNN Accelerator

Stream Buffers (1)

Stream Buffers (2)

CSR Weight Buffers u

2 1

Intel DLA

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18



Industrial Adoption

4x9b, 2x18b, 1x27b

27bx24b, 3x9b

T
9x9
N 9x9
—H —_ I
eeeee .
9x9 [
- I -

/
Intel Agilex DSP

\/
Xilinx Versal DSP
... both support similar INT9 mode!
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1,17~41,2~41,3~1.,4

A A A A A A

L i
Going beyond Precision 7?\022‘\721‘2221‘3?21‘422“5

e Special dedicated links
o Semi-2D DSP-to-DSP interconnect

70,0 0,1%0,2%0,3%/0,4%~0,5

2D Systolic Array

Transform into
columnar structure

124
S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19



>

. .. 2,0~2,1~2,2~2,32,4+2.5
Going beyond Precision 7% z WiE Z £ 5% z f

710 1,1~1,2~1,3~1.,4

-
-
>
[
>
-
>
-
>

e Special dedicated links

o Semi-2D DSP-to-DSP interconnect
e Better localization of data

o Embedded RF to reuse data

P_COUT 48bit

g =1
=2

Wide XOR >
ALU2 [22:17] ' .
+—0

| Transform into
ALUA 30:27 columnar structure

+—

ALUG [40:35]
+—

)

)

ALU7 [48:41]
oo o= D)

af<|

125
S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19



Huge Energy Savings

e
= m DSP48
B P-Opt
m PI-Opt
S m PIR-Opt
«© _|
O <
|
()
C o
T,
Q
> <
- o
L
Q
o I
o
S II Il.
o

9-bit 4-bit 2-bit

MobileNet-v2
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S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19



Schedule

Break (10 mins) Break (10 mins)
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Architecture FPGA DL Traditional New

Accelerators & FPGABlocks for ~  DL-optimized
Architectures DL - FPGABlocks

Through a DL
Lens




New DL-optimized FPGA Blocks




New DL-Specific Fabric

DL-optimized Blocks: Commercial

Tensor Blocks
FPGA Blocks Vaughn)
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Achronix Speedster MLP

Small & medium int & fp formats
o Decomposable multipliers

Input limit: provide extra inputs
from closely coupled BRAM
Enables 16x 8-bit multiples

Or 32x 4-bit multiplies

Formats

Integer

int3, int4, int6, int8, int16

Floating Point

fp3, fp4, fp6, p8, fp16, bfloat16, fp24.

MLP (Fixed-Point Mode)




Intel Stratix 10 NX:Tensor Block

30x int8 multipliers instead of 2x int18 multipliers
e Or 60x int4 multipliers T Focusing on
e Also block floating point bfp16 and bfp12 this mode
(~int8/int4 with 10-element shared exponent)

30x int8

e e e T T B
SRR




Tensor Block int8
30x int8 muiltipliers instead of 2x int18 multipliers

480
inputs

480
outputs

DSP block:
96 inputs

DSP block:
72 outputs

QL T T
TP e




Tensor Block int8

30x int8 multipliers instead of 2x int18 multipliers

Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators

Dedicated Cascades: Cheap

480
inputs

>

o1
91l

72
outputs



Tensor Block int8

30x int8 multipliers instead of 2x int18 multipliers
Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators
Limit Inputs: Broadcast one set of inputs to all dot-10 engines

>

320
inputs

o1
o1 -1

i Y el

72
outputs



Tensor Block int8

30x int8 multipliers instead of 2x int18 multipliers

Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators
Limit Inputs: Broadcast one set of inputs to all dot-10 engines

Limit Inputs: Ping-pong input reuse chain loaded from the block above

g T
g0 | T DA = 72
inputs | == s O |§§j§| { outputs

= Lol




_ 15x peak int8 TOPS but
Tensor Block int8 significant 1/0

30x int8 multipliers instead of 2x int18 multipliers HRSEE

Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators
Limit Inputs: Broadcast one set of inputs to all dot-10 engines

Limit Inputs: Ping-pong input reuse chain loaded from the block above

T =
o4
j_

g0 |™"
inputs | ™™
> Reg2|

72
outputs

= Lol




Tensor Block: 3 Modes to Give Interconnect Options

Gt

T |

rJ

R 1L e i
Tensor Mode: 30x int8 Vector Mode: 6x int8 Scalar Mode: 3x int8
Broadcast & preload inputs No input restriction No input or output
Three dot-10 one dot-6 restrictions o7



Can CNNs Exploit S10 Tensor Blocks? — HPIPE

Yes!

Need all modes
Dense weights
e Tensor mode, preload activations,

broadcast weights
o Except depthwise conv: scalar mode
e 5x speedup vs. DSP blocks
e Less than 15x peak, but well above any other
reported results

Depthwise Pointwise

Sparse weights
MobileNetV1 - V3: Multiple e Vector mode

convolution types o 1.9x speedup vs. DSP blocks

M. Stan, et al, “HPIPE NX: Boosting CNN Inference Acceleration Performance with Al-Optimized FPGAs,” FPT, Dec. 2022. 138



Can RNNs & LSTMs Exploit S10 Tensor Blocks? — NPU

Batch-3 N

imputs L3S Batch-3
upes Yes!
ﬁ Need some ba%ching
Bro.adcast Load e Preload activations, in batches
Weights Activations of 3
B S
= ! > e ] e Broadcast weights
~= :@— ﬁ—- e 3.5x speedup vs. DSP blocks

‘l

T

| | |
A. Boutros, et al “Beyond Peak Performance: Comparing The Real Performance of Al-Optimized FPGAs and GPUs,” FPT, 2020. 139




Tensor Block Takeaway

Large gains possible with a more “coarse-grained” block
Have to minimize/re-use/restructure interconnect

e Not trivial to use
e Can'tjust recompile your RTL/HLS — restructure your computation
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New DL-Specific Fabric

DL-optimized Blocks: Academic

Tensor Blocks
FPGA Blocks Vaughn)
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Tensor Slices

Programmable
interconnect Logic blocks 10 blocks

o] ERAN % 2% PR q & = A2 % WAL
% (S KR St R K ! %
%6%% I +% %% [o%%! . 6%%! 1%6%%

3
X
X

R

R
XX
KA
le%e%

4!

i

e
R
RS

)

Tensor/matrix operations are at
the heart of Deep Learning
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Matrix multiplier using Logic -
Blocks and DSP Slices is =
inefficient (~4x slower and ~10x

larger than an ASIC) I IO e
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Can we perform matrix

. e . R R
multiplication on an FPGA more &4 B I I ol e
L o
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Tensor Slices RAMs DSP slices

Arora et al. “Tensor Slices to the Rescue: Supercharging ML Acceleration on FPGASs”, ISFPGA 2021 142
Arora et al., “Tensor Slices: FPGA Building Blocks For The Deep Learning Era,” ACM TRETS 2022



Why add Tensor Slices?

15 il

— Compute density. Pack more
°= / compute in the same area footprint.

Update tools, provide libraries, etc.

Reduce routing wire usage

Less generic/flexible than a typical
FPGA. But worth it because of so
many ML applications.

Reduce area and Increase
frequency for implementing ML
designs

Coarse grained. Faster
compilation.
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Tensor Slice: High level diagram

§ - Switch
© C — Block
8 §— Core
] —
oy |
=
]’ 1 ! L
Global

Connection Block : _
| Routing 144
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Tensor Slice: High level diagram

—_— [ Muxing Logic ]
) EEEE
) Switch
? g input . . . - Block
— g Logic . . . .
111
- [ Output Logic ] ‘
——
Global

Connection Block

Routing 145




Tensor Slice: Design Space

Architecture How to lay them out in the FPGA
Systolic . Along columns
Dot-product based « Grouped together

Operations to support
Matrix matrix multiplication
Matrix vector multiplication
Element wise operations

Size (Number of PEs)
2x2, 4x4, 8x8, 16x16
Something else

FPGA area to spend on them
5%, 10%, 20%, 30%,...
Replace all DSP Slices with
Tensor Slices

Precisions to support
. Integer (int4, int8, int16)
. Floating point (bf16, fp16)
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Tensor Slice: Architecture and Layout

Systolic Architecture Arranged in columns
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Tensor Slices: Modes, Sizes, Precision

8x8, 4x4 For non-DL
Tensor Individual applications
Mode PE Mode | ——

| |
,\nﬁ:g:: Matrix Eltwise Eltwise Mult MAC
il vec mult add/sub mult

Precisions: int8, int16, fp16, bf16

148



Tensor Slice: Compute Throughput and Area

Compute Throughput (GigaMACs/sec)

Peak Compute vs. Tensor Slice Die Area

Tensor Slices M DSP Slices M Logic Blocks
6000

4000

Baseline Spct 10pct 15pct 20pct 25pct 30pct
Die Area Devoted to Tensor Slices

3.5x

Area Ratio (Proposed over Baseline)

Used Device Area

100 oom oo - - - - - - - - - - . -
0.75
(o)
52%
0.50
0.25
0.00
S KR & & & ¢ o Y ©
© > B &) o O
0&\ d)& 06\ é@ 0\\@ e & A \§6' \)\b' \\0\0
& S & & ¢

Koios DL benchmark

149



Tensor Slice: Frequency

B Baseline M Proposed == arm_core == bgm blob_merge == lu32peeng = lu8peeng = mcml == or1200
= stereovision0 stereovision1 == stereovision2 @ Average

400
300 - 0.0

60% o
e
300 y

. g
o~ 200 .

N . $

) 2= \ -1.0 S

N ®--__ S

S 200 I 3 W 3

) 5 @ .,

5 2 ~> 15 2

= S 100 — S

o = g

e 100 s s iE

- -2.0 g

N il

0 0 25
X N oy S < & & od
&\00 4‘.@ \\\Q ,bbb \((\‘) \§\ c}‘o 6’_\6 b’.’.!q’ ,bg‘?’ ‘,0\\° “)QG' RS @Q& q’QQ q:oQ ‘bQQ‘}
o & S & & © < S 3 @ < K’ U Q7 R/ Q7 R/
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(a) DL benchmarks (b) Non-DL benchmarks
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Routed Wirelength Ratio (Proposed over Baseline)

Tensor Slice: Interconnect

0.76

52%

0.50
0.25
0.00
: R e & X V@
PN R - RN
& © & @ ¢

(a) DL benchmarks

Routed Wirelength (in units of length 1 segments)

== arm_core == bgm blob_merge == |lu32peeng = lu8peeng = mcml == or1200
== stereovision0 stereovision1 == stereovision2 @ Average
2.00E+6 » 8
_‘.../_—-—
1.50E+6 - : 6
. ~ o y
1.00E+6 o~ 4
»
5.00E+5 8 2
0.00E+0 - 0
& o & & & o «
@'b‘, R7 > ’/‘ Q‘} Q? (/5
Q€ Q@Q Q«°Q ® Q€ Q@Q

(b) Non-DL benchmarks

Average Routed Wirelength Increase (%)
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Tensor Slice: Deep Neural Network Overlay

400 Precision=int8 I T T
2 500 VRF _VRF | | VRF |
[}
2]
3 2 :
L w o
o 200 2 ®
o < > = 2 + IFIFO <—
3 £ 5
<
£ §. OFIFO >
S 1.00 0
g_ = Selector Multi-Functional Unit Multi-Functional Unit Loader
8 1 ! T
c% 0.00 Matrix Unit (---{ Instruction Decode and Dispatch Unit |
NPU workload NPU-like Accelerator

Takeaway: An FPGA with Tensor Slices can achieve significant speedups on realistic DL networks,

compared to commercial FPGA.
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New DL-Specific Fabric
DL-optimized Blocks: Compute RAMs
FPGA Blocks (Vaughn)
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Compute-In-Memory

Also called Processing-In-Memory (PIM)
Bring computation closer to the storage

Reduces data movement, hence reducing energy and latency

Many flavors have been proposed:
- ReRAM based

- SRAM based Add compute to the Block RAMs on FPGA
- DRAM based

> 3D stacking based
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Bit-Serial Computing

One word of operation

A

| Sum available over
= multiple cycles

Precision agnostic! Great for DL!
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Bit-Line Computing

Bit-line Word-line

T TTY

AANDB
Logic-in-Memory [JSSC’16]
Compute Caches [HPCA’17]

Decoderl
m$$>
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Adding Processing Elements inside a SRAM

Column Peripheral |

vi

7
Row
decoders

BL/BLB

LB

| 255 .
—1 0 WL 7/
/
A 7
B 7/
/
o000 - P M Predication
i I /7

255 7

= 4
[ =AopB |

L]
-_—
—
l-..

Neural Cache [ISCA’18]
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What'’s the main principle here?

Two approaches:

( N

Activate two
wordlines at the
same time

Get two bits (one from each operand), add them, write result back to the RAM

a

(& )

Robustness

Use a
dual-ported
memory

N

Area’™
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Block RAMs on FPGAs are already dual ported! :)

lData A

Port A: Read/Write Circuits

Cell Array

Addr A Addr B

/ Port A: Decoder\

\Japoaa(] :g Mo /

Port B: Read/Write Circuits

I Data B
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High Level Operation

Operand
Vector#1

Operand
Vector#2

Result
Vector

—_—

1 element
(precision=4bits))

. Ll
lllll

Processing
Elements

Fﬂﬂﬂﬂﬂiﬂﬂdﬁjﬂ

Note the transposed
data layout



High Level Operation

N
< >
i =mmm Read on Port
Operand d /. 1 e[e_ment_ i+1 4#1
Vector#1 8 (precision=4bits) i)
= mﬁ* i3
Tl Read on Port
Operand s ] E jr1 #9
Vector#2 & 1 HIN )
4 ] HIN 3%
e k Write on any
esult k+1
ort
Vector k+2 P
k+3

|




CoMeFa RAMSs: High Level Operation

< N >
i
Operand | 1 Telement |, <4=sssm Read on Port
Vector#1 8 (precision=4bits)) i+ #1
B n:i i3
| HIM|
Operand ‘ 1 HHE B! Read on Port
V " . .
ector#2 o A | |+2 #2
Q s j+3
m lllll
K :
Result o Processing k+1 Write on any
Vector = Elements k+2
= \ k+3 port
OO
Compute r




CoMeFa RAMSs: High Level Operation

< N >
i
Operand 1 el_e_ment i+]
Vector#1 B (precision=dbits) i > ¢ummmmm Read on Port
/i i+3 H#1
- S AN j
Operand S j+1
Vector#2 aill {1 HN Read on Port
= s #2
V4 k
Result o Processing k+1 ]
Vector 2 Elements k+2 Write on any
= \ k+3 port
000000
Compute r




CoMeFa RAMSs: High Level Operation

< N >
Operand 1 element :+1
Vector#1 (precision=4bits) i+
.  ®m | |3 4= Read on Port
/ R A #1
e ] HIN|
Operand i | [+
Vector#2 e | i
____ i i3 Read on Port
y #2
Result Processing k+1
Vector Elements k+2 ,
\ k+3 Write on any

ZDZDZDZDZDZDr port




Design Space

Getting 2 operands in 1 cycle

e Activating two wordlines
e Use dual ported memory

Architecture of a PE

e Operations (add, logical, etc)
e Predication
e Configurability

Number of PEs and SAs

e PEs =SAs = Number of bitlines
e PEs =SAs = Number of data lines
e Or something in between

Loading and unloading data

e Transpose in soft logic
e Use RAM with transposable cells
e Transpose in DRAM controller

Programming the RAM

e Workload specific FSM
e Stored program

Signaling instructions to the RAM

e Write to a special address
e Repurpose a signal on the
interface
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Processing Element

Port#1

SA

B from

right Mux to enable any

| function of 2 inputs

Basically a dynamic

Port#2 Port#1
wps2
WD D
A4 4
write_sell
/ C‘) Cout
Wi ' .l predicate
o writellm
left y
BE c_en
c_rst
d_in2 d_inl d_out2

“ LUTII

m_rst Y
m_en d_outl
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One Operand Outside RAM (OOOR) Operations

Operand
replicated
in each
column

o >
— >
N >
w >

o @

o N
= 0O
N O
w N

o @

o @

o @®©

o U~ >

[(oJNS; IS

Operand 1

Operand 2

Result

Operand
2 is
outside
the RAM

o >
- >

N D>
w >
((o IS I

Save memory
space

and execution

o 0N
= 0O

cycles

C
@ic il
213 5
e

Operand 1

Result
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Programming the RAM

p
Hard-coded
FSM

—>
—
—

Instructions

CoMeFa
RAM

Harder to program
Higher performance

Program

010100011
Assembler LAlLLL A

Macro

Instruction
BRAM

Instruction
Controller

Decode

iy

—>

Instructions

Hardware

CoMeFa
RAM

Easier to program
Slightly reduced performance
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Observation

The BRAM has now become a SIMD processor
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Observation: Enhanced “effective” bandwidth
Internal (physical) geometry of the BRAM is more squarish than the “external”
(logical) geometry
Example: Consider 16 Kilobit RAM
Logical geometries available: 512x32, 1024x16, 2048x8, 4906x4,...
Physical geometry: 128x128 (128 word lines, 128 bitlines)
Why is this done?
Physical layout issues (pitch matching), ECC, Routing interface limitations

Can access more number of bits inside the RAM (assuming we have enough
sense amps)
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Overhead

PEs=SAs=# Bitlines
Activate two wordlines
Less-configurable PE

\

CCB [1]
Clock duration 60%
Area (block) 16.8%
Area (chip) 2.5%

PEs=SAs=# Bitlines
Use dual-ported'ness
More-configurable PE

CoMeFa-D [2]
25%
25.4%

3.8%

PEs=SAs=# Datalines
Re-use (cycle) SAs

Use dual-ported'ness
More-configurable PE

S

CoMeFa-A [2]
125%
8.1%

1.2%

[1] X. Wang et al., "Compute-Capable Block RAMs for Efficient Deep Learning Acceleration on FPGAs," FCCM 2021

[2] Arora et al., "CoMeFa: Compute-in-Memory Blocks for FPGAs," FCCM 2022
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Compute Throughput (Mid-Size, Arria 10-Like)

12000

10000

T.ow Practicality

CCB CoMeFa-D

High

CoMeFa-A

S @@
o R )
o R )
o R )

—
(=]
S
=)

Throughput
(GigaM ACs/second)

[
S
S
o o

uCCB
® CoMeFa-D
m CoMeFa-A
n DSP
LB
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Speedup - Microbenchmarks (8- to 20-bit precision)

7 —

B Speedup (CCB)
6 — (M Speedup (CoMeFa-D)
B Speedup (CoMeFa-A)

§ -
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Speedup - DNN Overlay (NPU-Like)

B int8 B int4
4

Speedup (compared to baseline)

mlp gru tdarknet Istm resnet geomean

~2.5x speed-up at 4-bit, but only ~1.2x at 8-bit
N2 cycles for N-bit serial multiplication 176



New
DL-optimized
FPGA Blocks

Out-of-Fabric Blocks
(Andrew)



Interposers

Passive

ubumps
Interposer :

TSV

Passive
Interposer

[ Diel I: Die 2 |

Package Substrate

Package Substrate

* ubumps

Active
/ Interposer ubumps

: Die 1
~[|_]_Die 2

[ONONO]

Package Substrate
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Interposers

Passive

ubum s Active ubumps
Interposer P T§v Bacsive ; / Interposer | p
' ' Interposer . 1 Die 1
LO_OI_)Ce 1 : Die 2 “||_| Die 2
J [OHONS)
Package Substrate Package Substrate \ ubumps Package Substrate
This is how Xilinx creates TT:I; CISS Ahsovv\\//i tlr? ’i(?;:]n;ggir\f\et?s Future
large multi-die FPGAs

and HBM “chiplets” www.crossroadsfpga.org
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Al Targeted Chiplets

Stratix 10 uses interposer technology to
integrate FPGA with transceiver chiplets Intel’ Stratix 10

Intel' HyperFlex

"G Arch.—yec ture
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Al Targeted Chiplets

Stratix 10 uses interposer technology to
integrate FPGA with transceiver chiplets

Intel” Stratix 10

What if we swap some/all with Al chiplets?

Intel’ HyperFlex

FPGA Architecture
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Al Targeted Chiplets

Stratix 10 uses interposer technology to
integrate FPGA with transceiver chiplets

Intel” Stratix 10

What if we swap some/all with Al chiplets?

TensorRAM Chiplet
6.0mm

Intel HyperFiex

FPGA Architec ture

Cluster lCIu‘ster ECIusterﬁ Cluéter

i

E. Nurvitadhi et al, "In-Package Domain-Specific ASICs for Intel Stratix 10 FPGAs: A Case Study of Accelerating Deep Learning using TensorTile ASIC", FPL,
2018

E. Nurvitadhi et al, "Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs", FCCM, 2019 182



Al Targeted Chiplets

Stratix 10 uses interposer technology to
integrate FPGA with transceiver chiplets

Intel” Stratix 10

What if we swap some/all with Al chiplets?

TensorRAM Chiplet
6.0mm

Intel’ HyperFlex

FPGA Archi itecture

Batch-1 Inference of “Clu;ter lCIu:Lster!'CIu‘isterﬁ CIu.‘stef
Sequence Models i :
16x lower latency
34x higher energy efficiency
vs. Volta GPU

£ 2
2.9mme

Cluster; | Cluster fCIuSter Cluster

|

TTET f!‘f
'V i

I

l

E. Nurvitadhi et al, "In-Package Domain-Specific ASICs for Intel Stratix 10 FPGAs: A Case Study of Accelerating Deep Learning using TensorTile ASIC", FPL,
2018

E. Nurvitadhi et al, "Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs", FCCM, 2019 183



Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&
Not all applications benefit from the bit-level flexibility of FPGAs
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Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&
Not all applications benefit from the bit-level flexibility of FPGAs

SCALAR ADAPTABLE

INTELLIGENT
ENGINES ENGINES ENGINES

(1) Array of Specialized Vector Processors n\
Efficiently execute parallel workloads on \ peeen
SW-programmable cores with programmable QAL

DUAL-CORE
| ARM CORTEX-RSF

| \ EAL-TIME ’\ HARDWARE \
bus-based routing between them ” :?O'Cm =

1006 V\DEO DS
ULTIRATE | DECODER

ETHERNET | UN' R0

W
® T
PCIE 326b/s \
GENA/GENS DDRA \ CORES
wnHDN‘A
ceix
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Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&
Not all applications benefit from the bit-level flexibility of FPGAs

:ﬁ‘\\_ AR ADAPTABLE INTELLIGENT
IGINES ENGINES ENGINES

(1) Array of Specialized Vector Processors
Efficiently execute parallel workloads on \_f»'i | \f‘“‘s
SW-programmable cores with programmable oo e -
bus-based routing between them Li:— Qo \ié“;&s
(2) System-level Packet-switched NoC : :
Decouple compute & communication E:LEZ‘E:‘;:
for easier system integration \»i’*: \j \, ==
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Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&
Not all applications benefit from the bit-level flexibility of FPGAs

SCALAR ADAPTABLE

INTELLIGENT
ENGINES ENGINES ENGINES

(1) Array of Specialized Vector Processors TS
Efficiently execute parallel workloads on \ el |\ Ems
SW-programmable cores with programmable e :

DUAL-CORE A
| ARM CORTEX-RSF

| \ EAL-TIME ’\ HARDWARE
bus-based routing between them | :@'mm ( "

1006 V\DEO

NDS
MULTIRATE nim"“ M
pCIE” 326b/s ETHERNET \ 0

Gem/eaﬁ DDRA \ CORES L
WITHDMA &
cex
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Xilinx Versal: Al Engines

SCALAR
ENGINES

DUAL-CORE
ARM CORTEX-RSF
REAL-TIME

‘ PROCESSOR

PLATFORM
MANAGEMENT
CONTROLLER

S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96

ADAPTABLE INTELLIGENT
ENGINES ENGINES

VERSAL
ADAPTABLE
HARDWARE

WP
PROGRAMMABLE NETWORKONC2

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem
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Xilinx Versal: Al Engines

32b Scalar
RISC Unit '+ Al Engine Mem Al Engine Mem
1|6n§tB Float Point IS_?:ri
Merm Vector Unit Unit |
G el Mem Al Engine Mem Al Engine
Vector Unit /

Each Al Engine is a VLIW vector proc.
Can execute 7 simultaneous OPs Al Engine Mem Al Engine Mem
2vecld + 1 vecst+ 1vecop + 2 scalar ops
Clocked at 1 GHz
128 INT8 MACs per clock — 256 GOPS
Biggest device has 400 AlEs — >100 TOPS Mem Al Engine Mem Al Engine

189
S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96



Xilinx Versal: Al Engines

% oo memon ks NeEvy | AUEnghe | e || AlErgha |- | er
Mem Al Engine Mem Al Engi;e
AI"Engine Mem AI"Engine > M;m
M;m — Al Engi:me “— M;m — Al Engi:]e

S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96
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Xilinx Versal: Al Engines

Each Al Engine can read/write directly to
its 4 adjacent memory blocks (NSEW)

Hardware locks for sync between AlEs

— Memory block can act as ping-pong
buffer between two pipelined AlEs

S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96

Al Engine ~— Mem ~—— Al Engine ~—— Mem
M;m —l Al Engine Mem Al Engine
AI"Engine — M;m — AI"Engine Mem
M;m — Al Engi:me “— M;m —l Al Engine
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Xilinx Versal: Al Engines

! !
Each Al Engine can read/write directly to , ,

Al E — M — AlE — M
its 4 adjacent memory blocks (NSEW) natne em ngine em
Hardware locks for sync between AlEs ' ' ' '
— Memory block can act as ping-pong Mem ~— Al Engine — Mem |— Al Engine
buffer between two pipelined AlEs
Bus-based reconfigurable routing - ! ! B!
— AIE can can read/write data from/to the Al Engine —— Mem = Al Engine ~— Mem
memory of any other AIE
— Allows efficient broadcast / multicast 1 | 1 [

Mem [~ Al Engine <~— Mem ~—— Al Engine

192
S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96



Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&
Not all applications benefit from the bit-level flexibility of FPGAs

:ﬁ 2:_ NAR ADAPTABLE INTELLIGENT
ES ENGINES ENGINES

DUAL-CORE
| ARM’CORTEX-A72 ! A
\ APPLICATION \
PROCESSOR \ ENGINES

\ VERSAL’
DUAL-CORE | \ ADAPTABLE

| ARM CORTEX-RSF \ RE
REAL-TIME \ HARDWA! ‘o

. PROCESSOR b \'-.NG\“ES

(2) System-level Packet-switched NoC

Decouple compute & communication et | o W=

pCIE” 326bls

. . . G 4/GENS DORA CORES L
for easier system integration ‘ ot L \, L
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Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces HBM Controller

— HBM/DDR, PCle, Ethernet

HBM Controller
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Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
— HBM/DDR, PCle, Ethernet

Large FPGA systems consist of many modules

HBM Controller

[0 JUAL
M1 ) M2 )
N\,

N A AT N
E—("*/\, \ \/\,\/F\ E
(M3 ) Ma )

C Y . )

_‘\ ] \\ 2\ N1

HBM Controller
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Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
— HBM/DDR, PCle, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication
— between modules, modules < hard blocks

M1 ~ M2

~ >

|
/l’-w N

Vgl
HBM Controller

196



Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
— HBM/DDR, PCle, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication
— between modules, modules < hard blocks

Closing timing is a nightmare!
— esp. with long CAD runtimes

M1

M2

~_>—"

M3

/
A\
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Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
— HBM/DDR, PCle, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication
— between modules, modules < hard blocks

Closing timing is a nightmare!
— esp. with long CAD runtimes

Can’t harden efficient
busses because of the
FPGA'’s reconfigurability!!

u )
M1 > M2 )
NS
- |
R a
L ap
i ( |
(M3 M4 )
C / Y
_‘\ b N1
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Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
— HBM/DDR, PCle, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication
— between modules, modules < hard blocks

Closing timing is a nightmare!
— esp. with long CAD runtimes

NoCs to the rescue!
Easier timing closure
Faster system integration
More efficient communication

HBM Controller

| IUENS | |  THRBRARY

| | 1
M1 ) M2
I g /’\ I—— I—— \)\/ P
| | | | |
0 1l | | | 1l q
Y ENRNRN) B2 i C
Junnl | (
M3 ) | M4
N ] 2\ a

HBM Controller
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NoCs to the rescue!
Easier timing closure
Why NoCs for FPGAs? Faster system integration

More efficient communication

HBM Controller

Many architecture questions ...
A L W
M1 ) M2$
What are NoC specifications? i S, diiin diiin e difiii
: | I I I I
How to connect to programmable routing? g i I I 1l
Soft vs. Hard links? ; s ....?....I nzs=ni jj O
Cost of embedding a hard NoC? I w3l )T | i ‘| T
How can applications benefit from it? h e
| | | | |

M. Abdelfattah and others, "Design and applications for embedded networks-on-chip on FPGAs", Transactions on Computers (TC), 2016 200



Xilinx Versal NoC

128b NoC links @ 1GHz — match DDR channel bandwidth

Modified mesh topology (rows squished to top & bottom) — match FPGA column layout
Only way to access external memory from the FPGA fabric

10s -100s fabric ports to FPGA logic presented as standard AXI interfaces

I. Swarbrick and others, "Versal network-on-chip (NoC)" IEEE Symposium on High-Performance Interconnects (HOTI), 2019 201



New
DL-optimized
FPGA Blocks

Beyond-FPGA Devices
(Andrew)
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The Rise of “Beyond-FPGA” Devices

Intel FPGA
System-in-Package
(Chiplets)

:;:‘ALAR ADAPTABLE INTELLGENT
IGINES ENGINES ENGINES

DUALCORE
ARM’CORTEX -A72 [ I\
\ APPLICATION
PROCESSOR \ ENGINES
\
| VERSAL' -

DUAL-CORE ADAPTABLE

| ARM CORTEX-RSF | \ HARDWARE
\

REAL-TIME
PROCESSOR

V\DEO NDS
uu WATE | pecoer |0
pCIE” 326bls HME:‘E‘S TR o0

GEN‘K,ENS DDRA
ITHDMA &
ceiX

Xilinx Versal ACAP

NoC 3
FPGA Fab
Adapters L

o S F
Sloche Z % g??ms
4%

2 e A
IRV IRV NNy
Ly aray
.|..

' | Processor
i | Subsystem

S

Memory
Blocks

Ext. Mem. NoC

Controller/ ' /* ; lé" ; -6: s " Routers
i : : Accelerator
Blocks

Base Die

Future 3D-Integrated

Devices
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The Rise of “Beyond-FPGA” Devices

Reconfigurable Acceleration Devices (RADs)

NoC 3
FPGA Fab
Adapters =Ll
S
Logic ;
i Blocks, é é i
\ VERSAL" . BRAMs
| ADAPTABLE é é #/
% HARDWARE ' ! Proc
1 ; Subs y t em

#4‘{#

Memory | |

Ext. Mem. /.
Controller / !

Intel FPGA
System-in-Package Xilinx Versal ACAP Future SD-Integrated
Devices

(Chiplets)
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New Territories ... New Evaluation Tools!

Routing Fabric? Functionality?
NoC FPGA Fabric
. Adapters <~ o .
Logic Blocks? b8 Gos s aas Coarse-Grain Granularity?
FPGA Fabric wogle P s Accelerator
Hard Blocks? T BRAMs Blocks Quantity?
r 7 é’JSESZ;“;’:;
FPGA CAD /# é é #/ LA Programming
Algorithms? '\gmzrsv g g Model?
Ext. Mem. /| y
Controlller V4 d /) ! Routers
/ : : * Accelerator
Blocks
Base Die
: . : m-Level
(Reconfigurable Acceleration Devices) Syste ceve
Interconnect
Abstraction? NoC Placement? 205

NoC(s) spec?



New Territories ... New Evaluation

Tools!

Routing Fabric? Functionality?
NoC FPGA Fabric
. Adapters <~ o .
Logic Blocks? b8 Gos s aas Coarse-Grain Granularity?
FPGA Fabric wogle P s Accelerator
Hard Blocks? BRANS Blocks Quantity?
£ 5:/ é’JSESZ;“::;
FPGA CAD /# é é #/ Programming
Algorithms? '\gmzrsv 1 ; : e Model?

Ext. Mem. /1

New RADs

(Reconfigurable Acceleration Devices) System-Level

Interconnect

NoC(s) spec? Abstraction?

Accelerator
Blocks

Routers

Huge Design Space
to Explore ...
Need new tools!

NoC Placement?
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The RAD Flow

A. Boutros and others, "Architecture and Application Co-Design for Beyond-FPGA Reconfigurable Acceleration Devices", IEEE Access (2022)
Github Repo: https://github.com/andrewboutros/rad-flow 207
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Summary




e FPGA architecture has always evolved to meet the needs of
key markets ... DL is a big one!
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FPGA architecture has always evolved to meet the needs of
key markets ... DL is a big one!

Traditional blocks optimized for DL (logic blocks, DSPS)
o Maintain FPGA generality
o Achieve considerable gains at minimal cost
New DL-targeted blocks (tensor blocks, compute-in-BRAMS)
o New class of specialized FPGAs for DL
o Higher gains at a higher cost
Heterogeneous reconfigurable devices
o Monolithic — NoCs + coarse-grained accelerators
o 2.5D Integration — DL chiplets
o 3D Integration?
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Thanks!
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