
FPGA Architecture for 
Deep Learning

FCCM’23 Tutorial



Organizers 

Andrew Boutros
PhD Student @ U Toronto

ML Systems Architect @ MangoBoost

2

Vaughn Betz
Prof. of ECE

U Toronto



Contributors 

Aman Arora
PhD Student

U Texas Austin

Seyedramin Rasoulinezhad
PhD Student

U Sydney

3

Philip Leong
Prof. of Computer Systems

U Sydney

Lizy K. John
Prof. of ECE

U Texas Austin



Raise your hand if you have used an FPGA for accelerating a 
deep learning (DL) workload
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Raise your hand if you have used a new DL-optimized FPGA
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Schedule

FPGA DL 
Accelerators & 
Architectures

9:30-10:00

FPGA 
Architecture 
Through a DL 

Lens

9:05-9:30

Break (10 mins)

Traditional 
FPGA Blocks for 

DL

10:10-10:40

New 
DL-optimized 
FPGA Blocks

10:40-12:00

Break (10 mins)



Keep it interactive ✋
Come say hi during breaks 🤝
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FPGA Architecture Through a DL Lens
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FPGA 
Architecture 

Through a DL 
Lens

FPGA Architecture, DL 
Implications and 

Opportunities
(Vaughn)
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Deep Learning Inference → Becoming Ubiquitous
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Nvidia Drive AGX 
Pegasus (2022) 

750W

Low inference latency 
crucial for safety!

~6% of global electricity demand 
by 2030 [1]

Low inference latency enables cascade of AI 
algorithms + networking!

Key metric is
Perf / W / $

Power is ~30% of 
cost

Energy Efficiency and Latency Matter

[1] N. Jones. “How to Stop Data Centres from Gobbling up the World’s Electricity”. In: Nature 2018

Chevy Bolt
~6 kW in city
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FPGA Architecture (through a DL Lens) from 300 m

1. What are the key building blocks of FPGAs?

2. How do they create strengths & challenges for Deep Learning?

3. Opportunities to create DL-optimized architectures
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FPGA Architecture 101

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29

Any function of K or fewer 
inputs, or a 1 bit adder
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FPGA Architecture 101

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29

clk

Group BLEs into larger 
logic blocks with local 

interconnect
15



A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29

Create array of logic blocks 
surrounded by pre-fabricated 

wire segments and 
SRAM-controlled routing muxes 

clk
Routing 

MUX

16

FPGA Architecture 101



Many Logic Blocks … Spatial Computing

Layout plot: Altera 
Stratix IV GX 230 Blue: Logic 

Blocks 
(and 

Programmable 
Routing)
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Prog. Logic & Routing Strength 1: Variable Precision

Can program to realize hardware of any bit width

● N-bit adder: ~N LEs
● N-bit multiplier: ~N2 LEs

● DL tolerant of low precision
● No one best precision for all networks and all layers
● Use lowest precision that meets accuracy needs for each network / layer

→ No need to pick from a limited group of precisions or numeric formats
18



Leveraging Variable Precision: Microsoft Brainwave

Small, custom floating point: 7x performance

No accuracy loss at (retrained) custom 9-bit floating point

Figures from [E. Chung et al, “Accelerating Persistent Neural Networks at Datacenter Scale,” Hot Chips 2017]
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Prog. Logic & Routing Strength 2: Spatial Compute Energy

Can reprogram FPGA to implement exact hardware needed by network

● Programmable routing: directly wire data from one unit to another
● Programmable logic: perform only necessary operation, w/o instruction stream

→ Large power / efficiency gains possible

20



● Programmability not free!
● LEs and programmable routing larger & slower than gates & wires

○ Average: ~25 - 30x larger and ~3x slower!
● How to mitigate?

○ Implement common functions in hardened blocks
○ Less programmable but built with gates (like an ASIC)
○ Example: DSP blocks for larger multiply-accumulate

● Opportunity 1
○ Can we make LEs themselves more efficient for DL operations?

Prog. Logic & Routing Weakness: Area & Delay Overhead

A. Boutros, S. Yazdanshenas and V. Betz, “You Can’t Improve What You Don’t Measure: FPGA vs. ASIC Efficiency Gaps for Convolutional Neural 
Network Inference,” ACM TRETS, Dec. 2018, pp. 20:1 – 20:23.
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Hard Block Example: DSP Blocks

18x18

22

25x more dense & 3x faster?



Hard Blocks: Programmable Routing Impact

2323

18x18

● New block → Needs muxes to/from programmable routing wires
● Column of blocks → Another channel of programmable routing
● Programmable Routing Area ∝ Blockinputs + Blockoutputs



Hard Blocks: Add Low-Cost Programmability
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18x18

● MAC → multiply or MAC
● Register inputs & outputs → Optional registering
● 18-bit FIR filters: 6X - 8X density & 2X - 2.5X speed vs. LE-implementation
A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29



Strength 3: Massive Parallelism

● Tens of thousands of 
multipliers in recent devices

● Designed for (mostly 
wireless) signal processing

● Opportunity 2: New hard 
blocks?

25

DSP 
Blocks



Block RAM

● Thousands of independent 
RAM blocks, spatially distributed

● Best size?
○ Trade-off: larger blocks lead to 

lower area/bit
○ Smaller blocks let you fit more 

RAM blocks & bandwidth in chip
○ ~20 kb / block a common choice

26

RAM 
Blocks



Strength 4: Flexible Memory → Low Latency

Huge flexibility in combining RAMs with programmable logic & routing

● Different for each layer
● Custom scatter/gather can exploit sparsity

Massive bandwidth

● ~Pb/s of on-chip bandwidth, split into 10,000+ components

Can keep compute units fed with little or no batching if most/all data on chip

● GPUs batch multiple inputs to amortize weight re-loading → latency increase

Challenge: very large networks need off-chip memory → weakens advantage
27

Narrow & 
Deep

Wide & 
Shallow

X
B
A
R

Independent



Block RAM: Under the Hood
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Dual Port
SRAM Core

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29

Wide vs. Deep Config

Programmable 
Routing

Unique feature: RAM 
configurable width/depth

● Increases flexibility
● E.g. 18k words x 1b

or 512 words x 36b

Opportunity 3:

● Tens of thousands of RAMs
● Can connect to anything
● Can we add in-memory 

processing cheaply?



Don’t Forget I/O !
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Programmable 
I/O (DDR, …)

Programmable 
Serial I/O 
(PCIe,...)



Strength 5: Low Latency, Highly Flexible I/O
HW accelerated, low latency

Myriad I/O options: DDR5, PCIe, Ethernet, custom standards, …

30

Datacenter: scale in space

Embedded: low latency & custom I/O

Conv2D MaxPool ReLU
Conv2D

Conv2D
Add100 Gb

Ethernet
FPGA 1 FPGA 2

Custom 
I/O

Preprocess 
& Feature 

Extract
DL

FPGA 



Recent Developments: NoCs, Embedded Accelerators

Achronix Speedster 7t

31

Xilinx Versal

Efficient system-level interconnect for (high bandwidth) I/O to prog. fabric

Opportunity 4: easier to integrate coarse-grained / novel accelerators



Strengths & Weaknesses vs. DL 
Application Attributes

(Vaughn)

32

FPGA 
Architecture 

Through a DL 
Lens



Deep Learning Attributes and FPGAs

33

Characteristic

Precision Low High

Sparse Weights? Yes: Efficient with custom 
memory & hw scatter-gather 

No: still efficient, but less 
opportunity for customization

Latency 
Constraint

Tight Loose: batching can help GPU 
efficiency

Network Size Moderate: on-chip memory 
stores much of network

Very large: Off-chip memory 
interfaces most important

Phase Inference Training

Network Changes Rare Frequent: Some accelerator styles 
will reduce developer productivity
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FPGA DL Accelerators and Architectures

35



FPGA DL 
Accelerators and 

Architectures

Styles of Accelerating DL 
using FPGAs

(Andrew)
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DL Acceleration Styles on FPGAs

Generality

Efficiency
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DL Acceleration Styles on FPGAs

Layer/Operation 
Engines

Generality

Efficiency

Offload specific operations from host to 
FPGA (e.g. GEMM, Convolution)

38



DL Acceleration Styles on FPGAs

Model-Specific 
Accelerators

Layer/Operation 
Engines

Generality

Efficiency

Accelerate a specific NN 
completely on FPGA

H. Li et al, “A High Performance FPGA-based Accelerator for Large-Scale Convolutional Neural Networks“, FPL 2016
39



DL Acceleration Styles on FPGAs

Model-Specific 
Accelerators

Layer/Operation 
Engines

Generality

Efficiency

Custom HW 
Generators

Domain-specific 
compilers

DL Framework → FPGAs

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020
S. Hadjis et al, “TensorFlow to Cloud FPGAs: Tradeoffs for Accelerating Deep Neural Networks“, FPL 2019

40

X. Zhang et al, “DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs”, ICCAD, 2018

https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=jKD0LmMAAAAJ&citation_for_view=jKD0LmMAAAAJ:LkGwnXOMwfcC


DL Acceleration Styles on FPGAs

Overlays
(Soft Processors)

Model-Specific 
Accelerators

Layer/Operation 
Engines

Generality

Efficiency

Custom HW 
Generators

SW-programmable processors with 
custom ISA & HW

Y. Yu et al, “OPU: An FPGA-Based Overlay Processor for Convolutional Neural Networks“, TVLSI 2020
A. Boutros et al, “Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs“, FPT 2020 41



Overlays
(Soft Processors)

Model-Specific 
Accelerators

Layer/Operation 
Engines

Generality

Efficiency

Custom HW 
Generators

Two Key Challenges for Accelerating DL using FPGAs …
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Overlays
(Soft Processors)

Model-Specific 
Accelerators

Layer/Operation 
Engines

Generality

Efficiency

Custom HW 
Generators

The Overhead of 
Reconfigurability Ease of Programming

Can we achieve competitive AI inference 
performance on FPGAs?

How to make FPGAs accessible for AI 
application developers?

Two Key Challenges for Accelerating DL using FPGAs …
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Model-Specific 
Accelerators

Layer/Operation 
Engines

Generality

Efficiency

The Overhead of 
Reconfigurability Ease of Programming

Can we achieve competitive AI inference 
performance on FPGAs?

How to make FPGAs accessible for AI 
application developers?

Two Key Challenges for Accelerating DL using FPGAs …

Overlays
(Soft Processors) Custom HW 

Generators

Will show two examples from these two design styles & how they can 
address these concerns

44
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Design Approach 1

Custom HW Generators
(HPIPE)
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Design Philosophy

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020

Conv2D 7x7, 
stride 2

Conv2D 5x5, 
stride 1

Conv2D 3x3, 
stride 1

PE PE PE Buffer

M
ap

M
ap

M
ap

Commonly → Temporal mapping on PE arrays

● Sequential processing of layers
● PEs handle any layer →  lower efficiency
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Design Philosophy

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020

Conv2D 7x7, 
stride 2

Conv2D 5x5, 
stride 1

Conv2D 3x3, 
stride 1

PE PE PE Buffer

M
ap

M
ap

M
ap

Conv2D 7x7, 
stride 2

Conv2D 5x5, 
stride 1

Conv2D 3x3, 
stride 1

PE PE PE

M
ap

M
ap

M
ap

Commonly → Temporal mapping on PE arrays

● Sequential processing of layers
● PEs handle any layer →  lower efficiency

Instead → Spatial mapping to specialized units

● Per-layer custom HW →  higher efficiency
● Exploit pipeline parallelism
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Design Philosophy

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020

Commonly → Temporal mapping on PE arrays

● Sequential processing of layers
● PEs handle any layer →  lower efficiency

Instead → Spatial mapping to specialized units

● Per-layer custom HW →  higher efficiency
● Exploit pipeline parallelism
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Design Philosophy

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020

Very efficient but ... 
requires a new 

implementation for 
each model!

Commonly → Temporal mapping on PE arrays

● Sequential processing of layers
● PEs handle any layer →  lower efficiency

Instead → Spatial mapping to specialized units

● Per-layer custom HW →  higher efficiency
● Exploit pipeline parallelism

49



Auto Generation of Custom CNN HW (HPIPE)

Fuse layers for more efficient implementations 

HW Specifications TensorFlow Model 
Description

Graph Optimization

Resource Allocation

RTL Generation

FPGA Bitstream

HPIPE

A pipeline is as slow as its slowest stage
Balance layer throughput to increase efficiency

Generate HW implementation from highly 
optimized layer templates

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020
50



ResNet-50 Results (Conventional Stratix 10 FPGA)

● 4x higher batch-1 throughput vs. 
V100 GPU at similar (low) latency

● 1.4x higher batch-8 throughput vs. 
V100 GPU at 2x lower latency

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020
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MobileNet-V2 Results (AI-Optimized Stratix 10 FPGA)

● 17x higher batch-1 throughput vs. 
V100 GPU at lower latency

● 1.3x higher batch-128 throughput 
vs. V100 GPU at 3x lower latency

M. Stan et al, “HPIPE NX: Boosting CNN Inference Acceleration Performance with AI-Optimized FPGAs“, Under Review
52
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Design Approach 2

FPGA Overlays
(NPU)
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Overlay Design Flow

Implement in RTL

Applications

FPGA CAD Tools

Bitstreams

Perf?

Y

N

Traditional Flow
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Overlay Design Flow

Implement in RTL

Applications

FPGA CAD Tools

Bitstreams

Perf?

Y

N

Domain 
Requirements

Design HW/SW 
Contract (ISA)

Develop SW Toolchain

Develop overlay via 
traditional flow

Applications

Implement in SW

Overlay Compiler

Binaries

Bitstream

Traditional Flow Overlay Flow

HW Experts Data Scientist
App Expert
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Neural Processing Unit (NPU)

● Very Long Instruction Word (VLIW) soft processor - 5 coarse grained stages
● Amortize control → Single instruction executes 45,000 operations
● Customize memory subsystem → Exploit tremendous on-chip memory BW
● Targeting memory-bound models (MLPs, RNNs, GRUs, LSTMs) 

A. Boutros et al, “Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs“, FPT 2020
56



Results vs. Same-Generation DL-Optimized GPUs

11x vs. V100
 23x vs. T4    

A. Boutros et al, “Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs“, FPT 2020

AI-Optimized FPGA 
with Tensor Blocks
(More details later!)
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Can current FPGAs achieve good DL inference performance? 
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Can current FPGAs achieve good DL inference performance? 

YES!
Automatic custom HW generation → HPIPE

Software-programmable Overlays → NPU
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Can current FPGAs achieve good DL inference performance? 

YES!
Automatic custom HW generation → HPIPE

Software-programmable Overlays → NPU

Can we make current FPGAs easier to use for DL application developers?
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Can current FPGAs achieve good DL inference performance? 

YES!
Automatic custom HW generation → HPIPE

Software-programmable Overlays → NPU

Can we make current FPGAs easier to use for DL application developers?
YES! 

Tensorflow to LUTs & wires → compile new bitstream for each model
Program purely in software → run instructions on a single optimized bitstream
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Can current FPGAs achieve good DL inference performance? 

YES!
Automatic custom HW generation → HPIPE

Software-programmable Overlays → NPU

Can we make current FPGAs easier to use for DL application developers?
YES! 

Tensorflow to LUTs & wires → compile new bitstream for each model
Program purely in software → run instructions on a single optimized bitstream

Both performance and ease-of-use can also be improved by 
enhancing underlying FPGA architecture for DL use cases …
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Architecture Exploration 
of DL-Optimized FPGAs

(Vaughn)
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FPGA DL 
Accelerators and 

Architectures



FPGA Architecture Research
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CAD 
Tool

FPGA 
Architecture 

Model
Benchmarks 

Area, 
Frequency, 

Power



FPGA Architecture Research
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CAD 
Tool

FPGA 
Architecture 

#1
Benchmarks 

Area, 
Frequency, 

Power

CAD 
Tool

FPGA 
Architecture 

#2
Benchmarks 

Area, 
Frequency, 

Power
Compare



VTR (Verilog to Routing)

ODIN or Yosys followed by ABC

VPR
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FPGA 
Architecture 

Model
Benchmarks 

Area, 
Frequency, 

Power

CAD 
Tool



VTR (Verilog to Routing)

Think Xilinx/AMD Vivado
or Altera/Intel Quartus

But…

For an FPGA described in 
the file

And

No bitstream generation
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FPGA Architecture Model

Blocks

Number and type of blocks

Layout of blocks on the FPGA

Routing

Distribution of wire segments

Types of switches

Configuration circuitry

If you need to experiment with it
68

FPGA 
Architecture 

Model
Benchmarks 

Area, 
Frequency, 

Power

CAD 
Tool



FPGA Architecture Model in VTR
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How do you create an FPGA architecture model?

Start from already 
existing ones in 

VTR

Capture the 
architecture 

attributes from 
existing FPGAs

Model it yourself 
using CAD tools 

like COFFE
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FPGA Benchmark Suites

Benchmark 
Suite

Medium- 
Large

Hetero- 
genous

Open-source 
CAD

DL-specific

MCNC20 🗶 🗶 ✔ 🗶
UMass RCG ✔ - 🗶 🗶
Groundhog - ✔ - 🗶
ERCBench - ✔ 🗶 🗶
VTR 🗶 ✔ ✔ 🗶
Titan ✔ ✔ 🗶 🗶
Koios ✔ ✔ ✔ ✔
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FPGA 
Architecture 

Model
Benchmarks 

Area, 
Frequency, 

Power

CAD 
Tool



Koios – The Titan of Intelligence

A DL-specific benchmark suite for FPGA research

40 benchmarks that cover a diverse representative space 

Open-source and works with VTR

Contains original designs, and designs re-created from prior works

Suitable for DL-specific FPGA architecture exploration and CAD research

72
Arora et al., Koios: A Deep Learning Benchmark Suite for FPGA Architecture and CAD Research, FPL’21



The Koios Benchmark Suite

Design Size
Implementation 

Style
Target Neural 

Network

Acceleration 
Paradigm

Numerical 
Precisions

Circuit Properties
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Case Study - Let’s add a new block for DL 

How much FPGA die area should 
be dedicated to it?

What is the impact on 
programmable routing?

What functionality should be 
hardened?

How flexible should that block be?

Specificity

Only few applications

Smaller, faster and 
more power-efficient

Waste Si area if not 
used

Generality

Capture more usecases

Larger area and reduced 
efficiency for specific 

application
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Case Study - Let’s add a new block for DL

Use VTR

Add new block to a full 
VTR architecture

Use a benchmark suite 
like Koios 

Area/timing/routability for 
new architecture

Write RTL model

Functionality, including 
programmable modes

Use COFFE

Implements core with 
standard cells & 
programmable routing 
with full custom

→ Speed & Area
→ VTR-compatible model 
of block
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Taxonomy of 
DL-optimized FPGA 

Architectures
(Vaughn)

76

FPGA DL 
Accelerators and 

Architectures



What can we improve?

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
77



We are changing the architecture of the FPGA itself 

E.g. changing the size of a LUT in a logic block

Not the design configured/programmed into the FPGA

E.g. designing a Brainwave like accelerator for an existing FPGA
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What can we change?
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Change LBs

Change DSPs

Change BRAMs

Change existing blocks



What can we change?
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Add new in-fabric blocks



What can we change?

81

Add new blocks outside the fabric



What can we change?

82

Add new chiplets within a package



Taxonomy

Logic 
Blocks

Hard 
Blocks

DL-Specific 
Fabric Blocks

Out-of-Fabric 
Blocks

On-Package 
Blocks

In-fabric Out-of-fabric

On-die On-package

Traditional New 

Fine-grained Coarse-grained

Soft MAC      Low-prec           Tensor Block                     AI Engines                                Tensor Tile
                           DSP                 Tensor Slices
                                                        C-RAMs
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Traditional FPGA Blocks for DL
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Traditional FPGA 
Blocks for DL

Logic Blocks
(Andrew)
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Good News for FPGAs … Low-Precision DL Inference

DL is resilient against noise/approximations
→ Use low precision MACs for inference

1.6325475272 ⇒ 1.633
“It is a cat anyway”

Many techniques to enable INT8/INT4 calculations with no accuracy loss
Can sacrifice a bit of accuracy by going down to ternary/binary networks

Good news for FPGAs → Can implement custom precisions efficiently!
88



Looking at Conventional FPGA Architectures …

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
89



… LEs are the most common blocks in an FPGA

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
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… LEs are the most common blocks in an FPGA

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
91

How well can these Logic Elements 
implement low precision MACs?



Deeper Look into a Modern FPGA Logic Element 
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Deeper Look into a Modern FPGA Logic Element 

8 distinct 
inputs
A→H
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Deeper Look into a Modern FPGA Logic Element 
4 optionally 
registered 

outputs
O1→O4

8 distinct 
inputs
A→H
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Deeper Look into a Modern FPGA Logic Element 
4 optionally 
registered 

outputs
O1→O4

2 bits of arithmetic 
fed by LUTs

8 distinct 
inputs
A→H
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Deeper Look into a Modern FPGA Logic Element 
4 optionally 
registered 

outputs
O1→O4

Can implement:
4-in logic→Add

2 bits of arithmetic 
fed by LUTs

8 distinct 
inputs
A→H
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Deeper Look into a Modern FPGA Logic Element 
4 optionally 
registered 

outputs
O1→O4

Can implement:
4-in logic→Add
2x 5-in logic

2 bits of arithmetic 
fed by LUTs

8 distinct 
inputs
A→H
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Deeper Look into a Modern FPGA Logic Element 
4 optionally 
registered 

outputs
O1→O4

Can implement:
4-in logic→Add

2x 5-in logic
1x 6-in logic

2 bits of arithmetic 
fed by LUTs

8 distinct 
inputs
A→H
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Back to Grade 3 Maths …

Inputs
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Back to Grade 3 Maths …

Inputs

Generate Partial 
Products
(AND Gates)
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Back to Grade 3 Maths …

Inputs

Generate Partial 
Products
(AND Gates)

Reduce Partial 
Products
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Back to Grade 3 Maths …

Inputs

Generate Partial 
Products
(AND Gates)

Reduce Partial 
Products

Final Output
102



How is it mapped?
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How is it mapped?
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How is it mapped?
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How is it mapped?
4-input LUT used to implement 2-input AND

Some LEs only used for adders

106



3 Suggested Ideas

More efficient adder 
compressor trees

107M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020

Idea 1: Add a 2nd 
carry chain



3 Suggested Ideas Idea 2: Add more 
adders in the chain

More efficient adder 
compressor trees

Denser arithmetic 
in general 

108

Idea 1: Add a 2nd 
carry chain

M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020



3 Suggested Ideas
Idea 1: Add a 2nd 

carry chain

Idea 2: Add more 
adders in the chain

Idea 3: Add shadow 
multipliers to LE 

clusters (reuse ports)

More efficient adder 
compressor trees

Denser arithmetic 
in general 

Denser multiplies vs. 
implementing in LEs 

109M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020



Results

Low Cost Change: 4-bit chain (Idea 2)
1.5x denser + 10% faster

Also benefits other non-DL applications
3% die area increase

High Gain Change: 9-bit Shadow Multipliers (Idea 3)
2.4x denser + 17% faster

12% die area increase

110
M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020



It’s all about Adders …

In MACs
Sum partial 

products to get 
final output

In Binary NNs
Sum XNOR 

outputs to get 
final output
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In the previous ideas, we add more full adders to FPGA LEs …
Full adders: 3 in → 2 bits (1 same significance + 1 higher order)

In MACs
Sum partial 

products to get 
final output

In Binary NNs
Sum XNOR 

outputs to get 
final output



It’s all about Adders …
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In the previous ideas, we add more full adders to FPGA LEs …
Full adders: 3 in → 2 bits (1 same significance + 1 higher order)

In many cases, we need to add more than 3 bits
Compressors: N in → M bits

In MACs
Sum partial 

products to get 
final output

In Binary NNs
Sum XNOR 

outputs to get 
final output

C3:11

C6:111



Compressors are important …

114

Generalized parallel counters/adders (i.e. compressors) are not 
efficient when mapped to FPGA LEs

Can we improve efficiency with minimal additions to FPGA LEs?

Across many microbenchmarks
>35% of compressors are C6:111

Most expensive on FPGAs

C6:111

S. Rasoulinezhad and others, "LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implementations", FPGA, 2020
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6-Input XOR gate sharing (expensive) LE inputs

S. Rasoulinezhad and others, "LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implementations", FPGA, 2020
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< 0.5% area overhead
Up to 36% denser compressor implementations

6-Input XOR gate sharing (expensive) LE inputs

S. Rasoulinezhad and others, "LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implementations", FPGA, 2020



DSP Blocks
(Andrew)

117

Traditional FPGA 
Blocks for DL



Traditional FPGA DSPs

● Optimized for wireless communication & filtering
○ Intel → 2x18b or 1x27b multiplication
○ Xilinx → 1x 18x27

● Can do better if we care about low-precision MACs

19×18

19×18

27×27 A
L
U18×27

Intel DSP blocks (19x18 and 27x27 modes) Xilinx DSP block

118



Key Design Goals

● Backward compatibility
○ Usable for other applications

● Ideally no effect on block frequency
○ No negative impact on non-DL designs

● Do not add (relatively expensive) routing ports
○ Avoid large area cost
○ Avoid potential routing hotspots

119



More Fracturability …

120

● Support traditional modes (27⨯27,18x18)
● Add new low-precision modes

■ 4x 9b multiply/MAC 
■ 8x 4b multiply/MAC

Keeping it low-cost is key …
● No additional routing ports
● Max reuse of existing multiplier arrays

[8:0]

S1 << 9

co
n

st
an

t

4:2 C1 (27b)

S2 << 18

4:2 C2 (54b)

[35:9][17:0]

[53:36]

4:2 C3 (64b)

CPA (36b) CPA (36b)

[35:0][63:36]

ch
ai

n
 i

n

Output Registers

18x18 9x9 9x18 9x18

M1 M2 M3 M4

Flexible
Shift-Add

9×18

9×18

9×9

18×18

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18
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Block area overhead: 

        12%
which is equivalent to

       ~0.6%
in DSP-rich devices 

DSP 
Block
Area

FPGA 
Core
Area

… and runs at the same frequency 

Low Area Overhead

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18



3 CNNs on 2 accelerator 
architectures

 1.3x     15%
in case of 8-bit precision

 1.6x     30%
in case of 4-bit precision

122

Higher
Perf.

Less
Logic 
Util.

Higher
Perf.

Less
Logic 
Util.

Application-level Results

Intel DLA

ASU CNN Accelerator

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18



Industrial Adoption

9x9

9x9

9x9

9x9

123

ALU

9x9

9x9

9x9

Negate

Negate

Negate

Intel Agilex DSP Xilinx Versal DSP

… both support similar INT9 mode! 

4x9b, 2x18b, 1x27b 27bx24b, 3x9b



Going beyond Precision
● Special dedicated links

○ Semi-2D DSP-to-DSP interconnect

124
S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19

2D Systolic Array

Transform into 
columnar structure



Going beyond Precision
● Special dedicated links

○ Semi-2D DSP-to-DSP interconnect
● Better localization of data

○ Embedded RF to reuse data

125
S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19

2D Systolic Array

Transform into 
columnar structure



Huge Energy Savings

126
S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19
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Schedule

FPGA DL 
Accelerators & 
Architectures

9:30-10:00

FPGA 
Architecture 
Through a DL 

Lens

9:05-9:30

Break (10 mins)

Traditional 
FPGA Blocks for 

DL

10:10-10:40

New 
DL-optimized 
FPGA Blocks

10:40-12:00

Break (10 mins)



New DL-optimized FPGA Blocks
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New 
DL-optimized 
FPGA Blocks

DL-Specific Fabric 
Blocks: Commercial 

Tensor Blocks 
(Vaughn)

129



Achronix Speedster MLP
● Small & medium int & fp formats

○ Decomposable multipliers
● Input limit: provide extra inputs 

from closely coupled BRAM
● Enables 16x 8-bit multiples
● Or 32x 4-bit multiplies

130
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Intel Stratix 10 NX:Tensor Block
30x int8 multipliers instead of 2x int18 multipliers

● Or 60x int4 multipliers
● Also block floating point bfp16 and bfp12 

(~int8/int4 with 10-element shared exponent)

30x int8

Focusing on 
this mode
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Tensor Block int8 
30x int8 multipliers instead of 2x int18 multipliers

480 
inputs

480 
outputs

DSP block: 
96 inputs

DSP block: 
72 outputs



133

Tensor Block int8 

480 
inputs

72 
outputs

30x int8 multipliers instead of 2x int18 multipliers
Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators

Dedicated Cascades: Cheap
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Tensor Block int8 
30x int8 multipliers instead of 2x int18 multipliers
Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators
Limit Inputs: Broadcast one set of inputs to all dot-10 engines

320 
inputs

72 
outputs
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Tensor Block int8 
30x int8 multipliers instead of 2x int18 multipliers
Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators
Limit Inputs: Broadcast one set of inputs to all dot-10 engines
Limit Inputs: Ping-pong input reuse chain loaded from the block above

80 
inputs

72 
outputs
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Tensor Block int8 
30x int8 multipliers instead of 2x int18 multipliers
Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators
Limit Inputs: Broadcast one set of inputs to all dot-10 engines
Limit Inputs: Ping-pong input reuse chain loaded from the block above

80 
inputs

72 
outputs

15x peak int8 TOPS but 
significant I/O 

constraints



Tensor Block: 3 Modes to Give Interconnect Options

Tensor Mode: 30x int8
Broadcast & preload inputs
Three dot-10 137

Vector Mode: 6x int8
No input restriction
one dot-6

Scalar Mode: 3x int8
No input or output 
restrictions



Can CNNs Exploit S10 Tensor Blocks? → HPIPE

Dense weights
● Tensor mode, preload activations, 

broadcast weights
○ Except depthwise conv: scalar mode

● 5x speedup vs. DSP blocks
● Less than 15x peak, but well above any other 

reported results

Sparse weights
● Vector mode

○ 1.9x speedup vs. DSP blocks
138

MobileNetV1 - V3: Multiple 
convolution types

Yes! 
Need all modes

M. Stan, et al, “HPIPE NX: Boosting CNN Inference Acceleration Performance with AI-Optimized FPGAs,” FPT, Dec. 2022. 



Can RNNs & LSTMs Exploit S10 Tensor Blocks? → NPU

d

139

Broadcast 
Weights1

1

Load 
Activations22

Yes!

Need some batching

● Preload activations, in batches 
of 3

● Broadcast weights
● 3.5x speedup vs. DSP blocks

A. Boutros, et al “Beyond Peak Performance: Comparing The Real Performance of AI-Optimized FPGAs and GPUs,” FPT, 2020.



Tensor Block Takeaway

Large gains possible with a more “coarse-grained” block

Have to minimize/re-use/restructure interconnect

● Not trivial to use
● Can’t just recompile your RTL/HLS → restructure your computation

140



New 
DL-optimized 
FPGA Blocks

DL-Specific Fabric 
Blocks: Academic 

Tensor Blocks 
(Vaughn)

141



Tensor Slices

142

Tensor/matrix operations are at 
the heart of Deep Learning

Matrix multiplier using Logic 
Blocks and DSP Slices is 
inefficient (~4x slower and ~10x 
larger than an ASIC)

Can we perform matrix 
multiplication on an FPGA more 
efficiently?

Arora et al. “Tensor Slices to the Rescue: Supercharging ML Acceleration on FPGAs”, ISFPGA 2021
Arora et al., “Tensor Slices: FPGA Building Blocks For The Deep Learning Era,” ACM TRETS 2022



Why add Tensor Slices?

Compute density. Pack more 
compute in the same area footprint.

Reduce routing wire usage

Reduce area and increase 
frequency for implementing ML 

designs

Coarse grained. Faster 
compilation. 

Update tools, provide libraries, etc.

Less generic/flexible than a typical 
FPGA. But worth it because of so 

many ML applications. 

143



Tensor Slice: High level diagram

144



Tensor Slice: High level diagram
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Tensor Slice: Design Space

146

Architecture
● Systolic
● Dot-product based

Size (Number of PEs)
● 2x2, 4x4, 8x8, 16x16
● Something else

Operations to support
● Matrix matrix multiplication
● Matrix vector multiplication
● Element wise operations

How to lay them out in the FPGA
● Along columns
● Grouped together

FPGA area to spend on them
● 5%, 10%, 20%, 30%,…
● Replace all DSP Slices with 

Tensor Slices

Precisions to support
● Integer (int4, int8, int16)
● Floating point (bf16, fp16)



Tensor Slice: Architecture and Layout

147

Systolic Architecture Arranged in columns



Tensor Slices: Modes, Sizes, Precision

148

8x8, 4x4 For non-DL 
applications

Precisions: int8, int16, fp16, bf16



Tensor Slice: Compute Throughput and Area

149

Koios DL benchmark

3.5x 52%

Die Area Devoted to Tensor Slices

Peak Compute vs. Tensor Slice Die Area
Used Device Area



Tensor Slice: Frequency

150

60%



Tensor Slice: Interconnect

151

52%



Tensor Slice: Deep Neural Network Overlay 

152

NPU-like Accelerator

1.6x

Precision=int8

NPU workload
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DL-Specific Fabric 
Blocks: Compute RAMs

(Vaughn)

155

New 
DL-optimized 
FPGA Blocks



 Many flavors have been proposed:
◦ ReRAM based
◦ SRAM based
◦ DRAM based
◦ 3D stacking based

Add compute to the Block RAMs on FPGA

Compute-In-Memory
Also called Processing-In-Memory (PIM)

Bring computation closer to the storage

Reduces data movement, hence reducing energy and latency

156



Bit-Serial Computing

One word of operation

Sum available over 
multiple cycles

Precision agnostic! Great for DL!
157



Bit-Line Computing

158

Logic-in-memory technology

A AND B 
Logic-in-Memory [JSSC’16]
Compute Caches [HPCA’17]



Adding Processing Elements inside a SRAM

Neural Cache [ISCA’18]

159



What’s the main principle here?

Get two bits (one from each operand), add them, write result back to the RAM

Two approaches:

Activate two 
wordlines at the 

same time

Use a 
dual-ported 

memory

Robustness 😟 Area😟 160



Block RAMs on FPGAs are already dual ported! :)

161



High Level Operation

162

Note the transposed 
data layout

N



High Level Operation

163

Read on Port 
#1

Read on Port 
#2

Write on any 
port

N



CoMeFa RAMs: High Level Operation
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Read on Port 
#1

Read on Port 
#2

Write on any 
port

N



CoMeFa RAMs: High Level Operation
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Read on Port 
#1

Read on Port 
#2

Write on any 
port

N



CoMeFa RAMs: High Level Operation
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Read on Port 
#1

Read on Port 
#2

Write on any 
port

N



Design Space

Getting 2 operands in 1 cycle
● Activating two wordlines
● Use dual ported memory

Programming the RAM

● Workload specific FSM
● Stored program

Number of PEs and SAs
● PEs = SAs = Number of bitlines
● PEs = SAs = Number of data lines
● Or something in between

Loading and unloading data
● Transpose in soft logic
● Use RAM with transposable cells
● Transpose in DRAM controller 

Architecture of a PE
● Operations (add, logical, etc)
● Predication
● Configurability

Signaling instructions to the RAM
● Write to a special address
● Repurpose a signal on the 

interface 167



Processing Element

168

Mux to enable any 
function of 2 inputs

Basically a dynamic 
“LUT”



One Operand Outside RAM (OOOR) Operations

169



Programming the RAM

170



Observation

The BRAM has now become a SIMD processor

171



Observation: Enhanced “effective” bandwidth

Internal (physical) geometry of the BRAM is more squarish than the “external” 
(logical) geometry

Example: Consider 16 Kilobit RAM

Logical geometries available: 512x32, 1024x16, 2048x8, 4906x4,...

Physical geometry: 128x128 (128 word lines, 128 bitlines)

Why is this done?

Physical layout issues (pitch matching), ECC, Routing interface limitations

Can access more number of bits inside the RAM (assuming we have enough 
sense amps) 172



Overhead

CCB [1] CoMeFa-D [2] CoMeFa-A [2]

Clock duration 60% 25% 125%

Area (block) 16.8% 25.4% 8.1%

Area (chip) 2.5% 3.8% 1.2%

PEs=SAs=# Bitlines
Activate two wordlines
Less-configurable PE

PEs=SAs=# Bitlines
Use dual-ported’ness
More-configurable PE

PEs=SAs=# Datalines
Re-use (cycle) SAs
Use dual-ported’ness
More-configurable PE

173

[1] X. Wang et al., "Compute-Capable Block RAMs for Efficient Deep Learning Acceleration on FPGAs," FCCM 2021

[2] Arora et al., "CoMeFa: Compute-in-Memory Blocks for FPGAs," FCCM 2022



Compute Throughput (Mid-Size, Arria 10-Like)

174



Speedup - Microbenchmarks (8- to 20-bit precision)

175



Speedup - DNN Overlay (NPU-Like)

176

~2.5x speed-up at 4-bit, but only ~1.2x at 8-bit
N2 cycles for N-bit serial multiplication



Out-of-Fabric Blocks
(Andrew)

177

New 
DL-optimized 
FPGA Blocks



Interposers

178



Interposers

179

This is how Xilinx creates 
large multi-die FPGAs

This is how Intel integrates 
FPGAs with transceiver 

and HBM “chiplets”

Future
www.crossroadsfpga.org

http://www.crossroadsfpga.org


AI Targeted Chiplets

180

Stratix 10 uses interposer technology to 
integrate FPGA with transceiver chiplets



AI Targeted Chiplets
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Stratix 10 uses interposer technology to 
integrate FPGA with transceiver chiplets

What if we swap some/all with AI chiplets?

AI



AI Targeted Chiplets
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Stratix 10 uses interposer technology to 
integrate FPGA with transceiver chiplets

What if we swap some/all with AI chiplets?

AI

E. Nurvitadhi et al, "In-Package Domain-Specific ASICs for Intel Stratix 10 FPGAs: A Case Study of Accelerating Deep Learning using TensorTile ASIC", FPL, 
2018
E. Nurvitadhi et al, "Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs", FCCM, 2019



AI Targeted Chiplets

183

Stratix 10 uses interposer technology to 
integrate FPGA with transceiver chiplets

What if we swap some/all with AI chiplets?

AI

E. Nurvitadhi et al, "In-Package Domain-Specific ASICs for Intel Stratix 10 FPGAs: A Case Study of Accelerating Deep Learning using TensorTile ASIC", FPL, 
2018
E. Nurvitadhi et al, "Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs", FCCM, 2019

Batch-1 Inference of 
Sequence Models
16x lower latency

34x higher energy efficiency
vs. Volta GPU



Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&

Not all applications benefit from the bit-level flexibility of FPGAs
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Xilinx Versal: AI Engines

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

188
S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96



Xilinx Versal: AI Engines

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

16 KB 
Inst 

Mem

32b Scalar 
RISC Unit

Fixed Point 
Vector Unit

Float Point 
Vector Unit

Load
Store
Unit

Each AI Engine is a VLIW vector proc.
Can execute 7 simultaneous OPs

2 vec ld + 1 vec st + 1 vec op + 2 scalar ops
Clocked at 1 GHz

128 INT8 MACs per clock → 256 GOPS
Biggest device has 400 AIEs → >100 TOPS 

189
S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96



Xilinx Versal: AI Engines

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96

Each AI Engine can read/write directly to 
its 4 adjacent memory blocks (NSEW)
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Xilinx Versal: AI Engines

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

Each AI Engine can read/write directly to 
its 4 adjacent memory blocks (NSEW)

Hardware locks for sync between AIEs
→ Memory block can act as ping-pong 
buffer between two pipelined AIEs

191
S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96



Xilinx Versal: AI Engines

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96
192

Each AI Engine can read/write directly to 
its 4 adjacent memory blocks (NSEW)

Hardware locks for sync between AIEs
→ Memory block can act as ping-pong 
buffer between two pipelined AIEs

Bus-based reconfigurable routing
→ AIE can can read/write data from/to the 
memory of any other AIE
→ Allows efficient broadcast / multicast



Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&

Not all applications benefit from the bit-level flexibility of FPGAs

(1) Array of Specialized Vector Processors 
Efficiently execute parallel workloads on 

SW-programmable cores with programmable 
bus-based routing between them

(2) System-level Packet-switched NoC
Decouple compute & communication 

for easier system integration
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Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces 
→ HBM/DDR, PCIe, Ethernet

HBM Controller

HBM Controller

PC
Ie PC

Ie
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Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces 
→ HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication
→ between modules, modules ↔ hard blocks

Closing timing is a nightmare!
→ esp. with long CAD runtimes

HBM Controller

HBM Controller

PC
Ie PC

Ie

M1

M3

M2

M4

Can’t harden efficient 
busses because of the 

FPGA’s reconfigurability!!
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Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces 
→ HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication
→ between modules, modules ↔ hard blocks

Closing timing is a nightmare!
→ esp. with long CAD runtimes

HBM Controller

HBM Controller

PC
Ie PC

Ie

M1

M3

M2

M4

NoCs to the rescue!
Easier timing closure

Faster system integration
More efficient communication
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Why NoCs for FPGAs?

Many architecture questions …

What are NoC specifications?
How to connect to programmable routing?

Soft vs. Hard links?
Cost of embedding a hard NoC?

How can applications benefit from it?

HBM Controller

HBM Controller

PC
Ie PC

Ie

M1

M3

M2

M4

NoCs to the rescue!
Easier timing closure

Faster system integration
More efficient communication

M. Abdelfattah and others, "Design and applications for embedded networks-on-chip on FPGAs", Transactions on Computers (TC), 2016 200



Xilinx Versal NoC

● 128b NoC links @ 1GHz → match DDR channel bandwidth
● Modified mesh topology (rows squished to top & bottom) → match FPGA column layout
● Only way to access external memory from the FPGA fabric
● 10s -100s fabric ports to FPGA logic presented as standard AXI interfaces 

I. Swarbrick and others, "Versal network-on-chip (NoC)" IEEE Symposium on High-Performance Interconnects (HOTI), 2019 201



Beyond-FPGA Devices
(Andrew)

202

New 
DL-optimized 
FPGA Blocks



The Rise of “Beyond-FPGA” Devices

Intel FPGA 
System-in-Package

(Chiplets)
Xilinx Versal ACAP Future 3D-Integrated 

Devices
203



The Rise of “Beyond-FPGA” Devices

Intel FPGA 
System-in-Package

(Chiplets)
Xilinx Versal ACAP Future 3D-Integrated 

Devices

Reconfigurable Acceleration Devices (RADs)

204



New Territories … New Evaluation Tools!
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Logic Blocks?

Hard Blocks?
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Granularity?
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FPGA CAD 
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System-Level 
Interconnect

FPGA Fabric
Coarse-Grain 
Accelerator 

Blocks

New RADs
(Reconfigurable Acceleration Devices)



New Territories … New Evaluation Tools!
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Routing Fabric?

Logic Blocks?

Hard Blocks?

Functionality?

Granularity?

Quantity?

FPGA CAD 
Algorithms?

Programming 
Model?

NoC(s) spec? Abstraction? NoC Placement?

System-Level 
Interconnect
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Huge Design Space 
to Explore …

Need new tools!New RADs
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● FPGA architecture has always evolved to meet the needs of 
key markets … DL is a big one!
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● FPGA architecture has always evolved to meet the needs of 
key markets … DL is a big one!

● Traditional blocks optimized for DL (logic blocks, DSPS)
○ Maintain FPGA generality
○ Achieve considerable gains at minimal cost

● New DL-targeted blocks (tensor blocks, compute-in-BRAMs)
○ New class of specialized FPGAs for DL
○ Higher gains at a higher cost

● Heterogeneous reconfigurable devices
○ Monolithic → NoCs + coarse-grained accelerators
○ 2.5D Integration → DL chiplets
○ 3D Integration? 

215



Thanks!
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