
FPGA Architecture for
Deep Learning

FCCM’23 Tutorial

Organizers

Andrew Boutros
PhD Student @ U Toronto

ML Systems Architect @ MangoBoost

2

Vaughn Betz
Prof. of ECE

U Toronto

Contributors

Aman Arora
PhD Student

U Texas Austin

Seyedramin Rasoulinezhad
PhD Student

U Sydney

3

Philip Leong
Prof. of Computer Systems

U Sydney

Lizy K. John
Prof. of ECE

U Texas Austin

Raise your hand if you have used an FPGA for accelerating a
deep learning (DL) workload

4

Raise your hand if you have used a new DL-optimized FPGA

5

Schedule

FPGA DL
Accelerators &
Architectures

9:30-10:00

FPGA
Architecture
Through a DL

Lens

9:05-9:30

Break (10 mins)

Traditional
FPGA Blocks for

DL

10:10-10:40

New
DL-optimized
FPGA Blocks

10:40-12:00

Break (10 mins)

Keep it interactive ✋
Come say hi during breaks 🤝

7

Schedule

FPGA DL
Accelerators &
Architectures

9:30-10:00

FPGA
Architecture
Through a DL

Lens

9:05-9:30

Break (10 mins)

Traditional
FPGA Blocks for

DL

10:10-10:40

New
DL-optimized
FPGA Blocks

10:40-12:00

Break (10 mins)

FPGA Architecture Through a DL Lens

9

FPGA
Architecture

Through a DL
Lens

FPGA Architecture, DL
Implications and

Opportunities
(Vaughn)

10

Deep Learning Inference → Becoming Ubiquitous

11

Nvidia Drive AGX
Pegasus (2022)

750W

Low inference latency
crucial for safety!

~6% of global electricity demand
by 2030 [1]

Low inference latency enables cascade of AI
algorithms + networking!

Key metric is
Perf / W / $

Power is ~30% of
cost

Energy Efficiency and Latency Matter

[1] N. Jones. “How to Stop Data Centres from Gobbling up the World’s Electricity”. In: Nature 2018

Chevy Bolt
~6 kW in city

12

FPGA Architecture (through a DL Lens) from 300 m

1. What are the key building blocks of FPGAs?

2. How do they create strengths & challenges for Deep Learning?

3. Opportunities to create DL-optimized architectures

13

FPGA Architecture 101

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29

Any function of K or fewer
inputs, or a 1 bit adder

14

FPGA Architecture 101

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29

clk

Group BLEs into larger
logic blocks with local

interconnect
15

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29

Create array of logic blocks
surrounded by pre-fabricated

wire segments and
SRAM-controlled routing muxes

clk
Routing

MUX

16

FPGA Architecture 101

Many Logic Blocks … Spatial Computing

Layout plot: Altera
Stratix IV GX 230 Blue: Logic

Blocks
(and

Programmable
Routing)

17

Prog. Logic & Routing Strength 1: Variable Precision

Can program to realize hardware of any bit width

● N-bit adder: ~N LEs
● N-bit multiplier: ~N2 LEs

● DL tolerant of low precision
● No one best precision for all networks and all layers
● Use lowest precision that meets accuracy needs for each network / layer

→ No need to pick from a limited group of precisions or numeric formats
18

Leveraging Variable Precision: Microsoft Brainwave

Small, custom floating point: 7x performance

No accuracy loss at (retrained) custom 9-bit floating point

Figures from [E. Chung et al, “Accelerating Persistent Neural Networks at Datacenter Scale,” Hot Chips 2017]
19

Prog. Logic & Routing Strength 2: Spatial Compute Energy

Can reprogram FPGA to implement exact hardware needed by network

● Programmable routing: directly wire data from one unit to another
● Programmable logic: perform only necessary operation, w/o instruction stream

→ Large power / efficiency gains possible

20

● Programmability not free!
● LEs and programmable routing larger & slower than gates & wires

○ Average: ~25 - 30x larger and ~3x slower!
● How to mitigate?

○ Implement common functions in hardened blocks
○ Less programmable but built with gates (like an ASIC)
○ Example: DSP blocks for larger multiply-accumulate

● Opportunity 1
○ Can we make LEs themselves more efficient for DL operations?

Prog. Logic & Routing Weakness: Area & Delay Overhead

A. Boutros, S. Yazdanshenas and V. Betz, “You Can’t Improve What You Don’t Measure: FPGA vs. ASIC Efficiency Gaps for Convolutional Neural
Network Inference,” ACM TRETS, Dec. 2018, pp. 20:1 – 20:23.

21

Hard Block Example: DSP Blocks

18x18

22

25x more dense & 3x faster?

Hard Blocks: Programmable Routing Impact

2323

18x18

● New block → Needs muxes to/from programmable routing wires
● Column of blocks → Another channel of programmable routing
● Programmable Routing Area ∝ Blockinputs + Blockoutputs

Hard Blocks: Add Low-Cost Programmability

2424

18x18

● MAC → multiply or MAC
● Register inputs & outputs → Optional registering
● 18-bit FIR filters: 6X - 8X density & 2X - 2.5X speed vs. LE-implementation
A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29

Strength 3: Massive Parallelism

● Tens of thousands of
multipliers in recent devices

● Designed for (mostly
wireless) signal processing

● Opportunity 2: New hard
blocks?

25

DSP
Blocks

Block RAM

● Thousands of independent
RAM blocks, spatially distributed

● Best size?
○ Trade-off: larger blocks lead to

lower area/bit
○ Smaller blocks let you fit more

RAM blocks & bandwidth in chip
○ ~20 kb / block a common choice

26

RAM
Blocks

Strength 4: Flexible Memory → Low Latency

Huge flexibility in combining RAMs with programmable logic & routing

● Different for each layer
● Custom scatter/gather can exploit sparsity

Massive bandwidth

● ~Pb/s of on-chip bandwidth, split into 10,000+ components

Can keep compute units fed with little or no batching if most/all data on chip

● GPUs batch multiple inputs to amortize weight re-loading → latency increase

Challenge: very large networks need off-chip memory → weakens advantage
27

Narrow &
Deep

Wide &
Shallow

X
B
A
R

Independent

Block RAM: Under the Hood

28

Dual Port
SRAM Core

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29

Wide vs. Deep Config

Programmable
Routing

Unique feature: RAM
configurable width/depth

● Increases flexibility
● E.g. 18k words x 1b

or 512 words x 36b

Opportunity 3:

● Tens of thousands of RAMs
● Can connect to anything
● Can we add in-memory

processing cheaply?

Don’t Forget I/O !

29

Programmable
I/O (DDR, …)

Programmable
Serial I/O
(PCIe,...)

Strength 5: Low Latency, Highly Flexible I/O
HW accelerated, low latency

Myriad I/O options: DDR5, PCIe, Ethernet, custom standards, …

30

Datacenter: scale in space

Embedded: low latency & custom I/O

Conv2D MaxPool ReLU
Conv2D

Conv2D
Add100 Gb

Ethernet
FPGA 1 FPGA 2

Custom
I/O

Preprocess
& Feature

Extract
DL

FPGA

Recent Developments: NoCs, Embedded Accelerators

Achronix Speedster 7t

31

Xilinx Versal

Efficient system-level interconnect for (high bandwidth) I/O to prog. fabric

Opportunity 4: easier to integrate coarse-grained / novel accelerators

Strengths & Weaknesses vs. DL
Application Attributes

(Vaughn)

32

FPGA
Architecture

Through a DL
Lens

Deep Learning Attributes and FPGAs

33

Characteristic

Precision Low High

Sparse Weights? Yes: Efficient with custom
memory & hw scatter-gather

No: still efficient, but less
opportunity for customization

Latency
Constraint

Tight Loose: batching can help GPU
efficiency

Network Size Moderate: on-chip memory
stores much of network

Very large: Off-chip memory
interfaces most important

Phase Inference Training

Network Changes Rare Frequent: Some accelerator styles
will reduce developer productivity

Schedule

FPGA DL
Accelerators &
Architectures

9:30-10:00

FPGA
Architecture
Through a DL

Lens

9:05-9:30

Break (10 mins)

Traditional
FPGA Blocks for

DL

10:10-10:40

New
DL-optimized
FPGA Blocks

10:40-12:00

Break (10 mins)

FPGA DL Accelerators and Architectures

35

FPGA DL
Accelerators and

Architectures

Styles of Accelerating DL
using FPGAs

(Andrew)

36

DL Acceleration Styles on FPGAs

Generality

Efficiency

37

DL Acceleration Styles on FPGAs

Layer/Operation
Engines

Generality

Efficiency

Offload specific operations from host to
FPGA (e.g. GEMM, Convolution)

38

DL Acceleration Styles on FPGAs

Model-Specific
Accelerators

Layer/Operation
Engines

Generality

Efficiency

Accelerate a specific NN
completely on FPGA

H. Li et al, “A High Performance FPGA-based Accelerator for Large-Scale Convolutional Neural Networks“, FPL 2016
39

DL Acceleration Styles on FPGAs

Model-Specific
Accelerators

Layer/Operation
Engines

Generality

Efficiency

Custom HW
Generators

Domain-specific
compilers

DL Framework → FPGAs

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020
S. Hadjis et al, “TensorFlow to Cloud FPGAs: Tradeoffs for Accelerating Deep Neural Networks“, FPL 2019

40

X. Zhang et al, “DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs”, ICCAD, 2018

https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=jKD0LmMAAAAJ&citation_for_view=jKD0LmMAAAAJ:LkGwnXOMwfcC

DL Acceleration Styles on FPGAs

Overlays
(Soft Processors)

Model-Specific
Accelerators

Layer/Operation
Engines

Generality

Efficiency

Custom HW
Generators

SW-programmable processors with
custom ISA & HW

Y. Yu et al, “OPU: An FPGA-Based Overlay Processor for Convolutional Neural Networks“, TVLSI 2020
A. Boutros et al, “Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs“, FPT 2020 41

Overlays
(Soft Processors)

Model-Specific
Accelerators

Layer/Operation
Engines

Generality

Efficiency

Custom HW
Generators

Two Key Challenges for Accelerating DL using FPGAs …

42

Overlays
(Soft Processors)

Model-Specific
Accelerators

Layer/Operation
Engines

Generality

Efficiency

Custom HW
Generators

The Overhead of
Reconfigurability Ease of Programming

Can we achieve competitive AI inference
performance on FPGAs?

How to make FPGAs accessible for AI
application developers?

Two Key Challenges for Accelerating DL using FPGAs …

43

Model-Specific
Accelerators

Layer/Operation
Engines

Generality

Efficiency

The Overhead of
Reconfigurability Ease of Programming

Can we achieve competitive AI inference
performance on FPGAs?

How to make FPGAs accessible for AI
application developers?

Two Key Challenges for Accelerating DL using FPGAs …

Overlays
(Soft Processors) Custom HW

Generators

Will show two examples from these two design styles & how they can
address these concerns

44

45

Design Approach 1

Custom HW Generators
(HPIPE)

45

Design Philosophy

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020

Conv2D 7x7,
stride 2

Conv2D 5x5,
stride 1

Conv2D 3x3,
stride 1

PE PE PE Buffer

M
ap

M
ap

M
ap

Commonly → Temporal mapping on PE arrays

● Sequential processing of layers
● PEs handle any layer → lower efficiency

46

Design Philosophy

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020

Conv2D 7x7,
stride 2

Conv2D 5x5,
stride 1

Conv2D 3x3,
stride 1

PE PE PE Buffer

M
ap

M
ap

M
ap

Conv2D 7x7,
stride 2

Conv2D 5x5,
stride 1

Conv2D 3x3,
stride 1

PE PE PE

M
ap

M
ap

M
ap

Commonly → Temporal mapping on PE arrays

● Sequential processing of layers
● PEs handle any layer → lower efficiency

Instead → Spatial mapping to specialized units

● Per-layer custom HW → higher efficiency
● Exploit pipeline parallelism

47

Design Philosophy

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020

Commonly → Temporal mapping on PE arrays

● Sequential processing of layers
● PEs handle any layer → lower efficiency

Instead → Spatial mapping to specialized units

● Per-layer custom HW → higher efficiency
● Exploit pipeline parallelism

48

Design Philosophy

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020

Very efficient but ...
requires a new

implementation for
each model!

Commonly → Temporal mapping on PE arrays

● Sequential processing of layers
● PEs handle any layer → lower efficiency

Instead → Spatial mapping to specialized units

● Per-layer custom HW → higher efficiency
● Exploit pipeline parallelism

49

Auto Generation of Custom CNN HW (HPIPE)

Fuse layers for more efficient implementations

HW Specifications TensorFlow Model
Description

Graph Optimization

Resource Allocation

RTL Generation

FPGA Bitstream

HPIPE

A pipeline is as slow as its slowest stage
Balance layer throughput to increase efficiency

Generate HW implementation from highly
optimized layer templates

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020
50

ResNet-50 Results (Conventional Stratix 10 FPGA)

● 4x higher batch-1 throughput vs.
V100 GPU at similar (low) latency

● 1.4x higher batch-8 throughput vs.
V100 GPU at 2x lower latency

M. Hall et al, “From TensorFlow Graphs to LUTs and Wires: Automated Sparse and Physically Aware CNN Hardware Generation“, FPT 2020
51

MobileNet-V2 Results (AI-Optimized Stratix 10 FPGA)

● 17x higher batch-1 throughput vs.
V100 GPU at lower latency

● 1.3x higher batch-128 throughput
vs. V100 GPU at 3x lower latency

M. Stan et al, “HPIPE NX: Boosting CNN Inference Acceleration Performance with AI-Optimized FPGAs“, Under Review
52

53

Design Approach 2

FPGA Overlays
(NPU)

53

Overlay Design Flow

Implement in RTL

Applications

FPGA CAD Tools

Bitstreams

Perf?

Y

N

Traditional Flow

54

Overlay Design Flow

Implement in RTL

Applications

FPGA CAD Tools

Bitstreams

Perf?

Y

N

Domain
Requirements

Design HW/SW
Contract (ISA)

Develop SW Toolchain

Develop overlay via
traditional flow

Applications

Implement in SW

Overlay Compiler

Binaries

Bitstream

Traditional Flow Overlay Flow

HW Experts Data Scientist
App Expert

55

Neural Processing Unit (NPU)

● Very Long Instruction Word (VLIW) soft processor - 5 coarse grained stages
● Amortize control → Single instruction executes 45,000 operations
● Customize memory subsystem → Exploit tremendous on-chip memory BW
● Targeting memory-bound models (MLPs, RNNs, GRUs, LSTMs)

A. Boutros et al, “Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs“, FPT 2020
56

Results vs. Same-Generation DL-Optimized GPUs

11x vs. V100
 23x vs. T4

A. Boutros et al, “Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs“, FPT 2020

AI-Optimized FPGA
with Tensor Blocks
(More details later!)

57

Can current FPGAs achieve good DL inference performance?

58

Can current FPGAs achieve good DL inference performance?

YES!
Automatic custom HW generation → HPIPE

Software-programmable Overlays → NPU

59

Can current FPGAs achieve good DL inference performance?

YES!
Automatic custom HW generation → HPIPE

Software-programmable Overlays → NPU

Can we make current FPGAs easier to use for DL application developers?

60

Can current FPGAs achieve good DL inference performance?

YES!
Automatic custom HW generation → HPIPE

Software-programmable Overlays → NPU

Can we make current FPGAs easier to use for DL application developers?
YES!

Tensorflow to LUTs & wires → compile new bitstream for each model
Program purely in software → run instructions on a single optimized bitstream

61

Can current FPGAs achieve good DL inference performance?

YES!
Automatic custom HW generation → HPIPE

Software-programmable Overlays → NPU

Can we make current FPGAs easier to use for DL application developers?
YES!

Tensorflow to LUTs & wires → compile new bitstream for each model
Program purely in software → run instructions on a single optimized bitstream

Both performance and ease-of-use can also be improved by
enhancing underlying FPGA architecture for DL use cases …

62

Architecture Exploration
of DL-Optimized FPGAs

(Vaughn)

63

FPGA DL
Accelerators and

Architectures

FPGA Architecture Research

64

CAD
Tool

FPGA
Architecture

Model
Benchmarks

Area,
Frequency,

Power

FPGA Architecture Research

65

CAD
Tool

FPGA
Architecture

#1
Benchmarks

Area,
Frequency,

Power

CAD
Tool

FPGA
Architecture

#2
Benchmarks

Area,
Frequency,

Power
Compare

VTR (Verilog to Routing)

ODIN or Yosys followed by ABC

VPR

66

FPGA
Architecture

Model
Benchmarks

Area,
Frequency,

Power

CAD
Tool

VTR (Verilog to Routing)

Think Xilinx/AMD Vivado
or Altera/Intel Quartus

But…

For an FPGA described in
the file

And

No bitstream generation

67

FPGA Architecture Model

Blocks

Number and type of blocks

Layout of blocks on the FPGA

Routing

Distribution of wire segments

Types of switches

Configuration circuitry

If you need to experiment with it
68

FPGA
Architecture

Model
Benchmarks

Area,
Frequency,

Power

CAD
Tool

FPGA Architecture Model in VTR

69

How do you create an FPGA architecture model?

Start from already
existing ones in

VTR

Capture the
architecture

attributes from
existing FPGAs

Model it yourself
using CAD tools

like COFFE

70

FPGA Benchmark Suites

Benchmark
Suite

Medium-
Large

Hetero-
genous

Open-source
CAD

DL-specific

MCNC20 🗶 🗶 ✔ 🗶
UMass RCG ✔ - 🗶 🗶
Groundhog - ✔ - 🗶
ERCBench - ✔ 🗶 🗶
VTR 🗶 ✔ ✔ 🗶
Titan ✔ ✔ 🗶 🗶
Koios ✔ ✔ ✔ ✔

71

FPGA
Architecture

Model
Benchmarks

Area,
Frequency,

Power

CAD
Tool

Koios – The Titan of Intelligence

A DL-specific benchmark suite for FPGA research

40 benchmarks that cover a diverse representative space

Open-source and works with VTR

Contains original designs, and designs re-created from prior works

Suitable for DL-specific FPGA architecture exploration and CAD research

72
Arora et al., Koios: A Deep Learning Benchmark Suite for FPGA Architecture and CAD Research, FPL’21

The Koios Benchmark Suite

Design Size
Implementation

Style
Target Neural

Network

Acceleration
Paradigm

Numerical
Precisions

Circuit Properties

73

Case Study - Let’s add a new block for DL

How much FPGA die area should
be dedicated to it?

What is the impact on
programmable routing?

What functionality should be
hardened?

How flexible should that block be?

Specificity

Only few applications

Smaller, faster and
more power-efficient

Waste Si area if not
used

Generality

Capture more usecases

Larger area and reduced
efficiency for specific

application

74

Case Study - Let’s add a new block for DL

Use VTR

Add new block to a full
VTR architecture

Use a benchmark suite
like Koios

Area/timing/routability for
new architecture

Write RTL model

Functionality, including
programmable modes

Use COFFE

Implements core with
standard cells &
programmable routing
with full custom

→ Speed & Area
→ VTR-compatible model
of block

75

Taxonomy of
DL-optimized FPGA

Architectures
(Vaughn)

76

FPGA DL
Accelerators and

Architectures

What can we improve?

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
77

We are changing the architecture of the FPGA itself

E.g. changing the size of a LUT in a logic block

Not the design configured/programmed into the FPGA

E.g. designing a Brainwave like accelerator for an existing FPGA

78

What can we change?

79

Change LBs

Change DSPs

Change BRAMs

Change existing blocks

What can we change?

80

Add new in-fabric blocks

What can we change?

81

Add new blocks outside the fabric

What can we change?

82

Add new chiplets within a package

Taxonomy

Logic
Blocks

Hard
Blocks

DL-Specific
Fabric Blocks

Out-of-Fabric
Blocks

On-Package
Blocks

In-fabric Out-of-fabric

On-die On-package

Traditional New

Fine-grained Coarse-grained

Soft MAC Low-prec Tensor Block AI Engines Tensor Tile
 DSP Tensor Slices
 C-RAMs

83

Schedule

FPGA DL
Accelerators &
Architectures

9:30-10:00

FPGA
Architecture
Through a DL

Lens

9:05-9:30

Break (10 mins)

Traditional
FPGA Blocks for

DL

10:10-10:40

New
DL-optimized
FPGA Blocks

10:40-12:00

Break (10 mins)

Schedule

FPGA DL
Accelerators &
Architectures

9:30-10:00

FPGA
Architecture
Through a DL

Lens

9:05-9:30

Break (10 mins)

Traditional
FPGA Blocks for

DL

10:10-10:40

New
DL-optimized
FPGA Blocks

10:40-12:00

Break (10 mins)

Traditional FPGA Blocks for DL

86

Traditional FPGA
Blocks for DL

Logic Blocks
(Andrew)

87

Good News for FPGAs … Low-Precision DL Inference

DL is resilient against noise/approximations
→ Use low precision MACs for inference

1.6325475272 ⇒ 1.633
“It is a cat anyway”

Many techniques to enable INT8/INT4 calculations with no accuracy loss
Can sacrifice a bit of accuracy by going down to ternary/binary networks

Good news for FPGAs → Can implement custom precisions efficiently!
88

Looking at Conventional FPGA Architectures …

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
89

… LEs are the most common blocks in an FPGA

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
90

… LEs are the most common blocks in an FPGA

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression." IEEE Circuits and Systems Magazine 21.2 (2021): 4-29
91

How well can these Logic Elements
implement low precision MACs?

Deeper Look into a Modern FPGA Logic Element

92

Deeper Look into a Modern FPGA Logic Element

8 distinct
inputs
A→H

93

Deeper Look into a Modern FPGA Logic Element
4 optionally
registered

outputs
O1→O4

8 distinct
inputs
A→H

94

Deeper Look into a Modern FPGA Logic Element
4 optionally
registered

outputs
O1→O4

2 bits of arithmetic
fed by LUTs

8 distinct
inputs
A→H

95

Deeper Look into a Modern FPGA Logic Element
4 optionally
registered

outputs
O1→O4

Can implement:
4-in logic→Add

2 bits of arithmetic
fed by LUTs

8 distinct
inputs
A→H

96

Deeper Look into a Modern FPGA Logic Element
4 optionally
registered

outputs
O1→O4

Can implement:
4-in logic→Add
2x 5-in logic

2 bits of arithmetic
fed by LUTs

8 distinct
inputs
A→H

97

Deeper Look into a Modern FPGA Logic Element
4 optionally
registered

outputs
O1→O4

Can implement:
4-in logic→Add

2x 5-in logic
1x 6-in logic

2 bits of arithmetic
fed by LUTs

8 distinct
inputs
A→H

98

Back to Grade 3 Maths …

Inputs

99

Back to Grade 3 Maths …

Inputs

Generate Partial
Products
(AND Gates)

100

Back to Grade 3 Maths …

Inputs

Generate Partial
Products
(AND Gates)

Reduce Partial
Products

101

Back to Grade 3 Maths …

Inputs

Generate Partial
Products
(AND Gates)

Reduce Partial
Products

Final Output
102

How is it mapped?

103

How is it mapped?

104

How is it mapped?

105

How is it mapped?
4-input LUT used to implement 2-input AND

Some LEs only used for adders

106

3 Suggested Ideas

More efficient adder
compressor trees

107M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020

Idea 1: Add a 2nd
carry chain

3 Suggested Ideas Idea 2: Add more
adders in the chain

More efficient adder
compressor trees

Denser arithmetic
in general

108

Idea 1: Add a 2nd
carry chain

M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020

3 Suggested Ideas
Idea 1: Add a 2nd

carry chain

Idea 2: Add more
adders in the chain

Idea 3: Add shadow
multipliers to LE

clusters (reuse ports)

More efficient adder
compressor trees

Denser arithmetic
in general

Denser multiplies vs.
implementing in LEs

109M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020

Results

Low Cost Change: 4-bit chain (Idea 2)
1.5x denser + 10% faster

Also benefits other non-DL applications
3% die area increase

High Gain Change: 9-bit Shadow Multipliers (Idea 3)
2.4x denser + 17% faster

12% die area increase

110
M. Eldafrawy and others, "FPGA Logic Block Architectures for Efficient Deep Learning Inference", TRETS, 2020

It’s all about Adders …

In MACs
Sum partial

products to get
final output

In Binary NNs
Sum XNOR

outputs to get
final output

It’s all about Adders …

112

In the previous ideas, we add more full adders to FPGA LEs …
Full adders: 3 in → 2 bits (1 same significance + 1 higher order)

In MACs
Sum partial

products to get
final output

In Binary NNs
Sum XNOR

outputs to get
final output

It’s all about Adders …

113

In the previous ideas, we add more full adders to FPGA LEs …
Full adders: 3 in → 2 bits (1 same significance + 1 higher order)

In many cases, we need to add more than 3 bits
Compressors: N in → M bits

In MACs
Sum partial

products to get
final output

In Binary NNs
Sum XNOR

outputs to get
final output

C3:11

C6:111

Compressors are important …

114

Generalized parallel counters/adders (i.e. compressors) are not
efficient when mapped to FPGA LEs

Can we improve efficiency with minimal additions to FPGA LEs?

Across many microbenchmarks
>35% of compressors are C6:111

Most expensive on FPGAs

C6:111

S. Rasoulinezhad and others, "LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implementations", FPGA, 2020

115

6-Input XOR gate sharing (expensive) LE inputs

S. Rasoulinezhad and others, "LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implementations", FPGA, 2020

116

< 0.5% area overhead
Up to 36% denser compressor implementations

6-Input XOR gate sharing (expensive) LE inputs

S. Rasoulinezhad and others, "LUXOR: An FPGA Logic Cell Architecture for Efficient Compressor Tree Implementations", FPGA, 2020

DSP Blocks
(Andrew)

117

Traditional FPGA
Blocks for DL

Traditional FPGA DSPs

● Optimized for wireless communication & filtering
○ Intel → 2x18b or 1x27b multiplication
○ Xilinx → 1x 18x27

● Can do better if we care about low-precision MACs

19×18

19×18

27×27 A
L
U18×27

Intel DSP blocks (19x18 and 27x27 modes) Xilinx DSP block

118

Key Design Goals

● Backward compatibility
○ Usable for other applications

● Ideally no effect on block frequency
○ No negative impact on non-DL designs

● Do not add (relatively expensive) routing ports
○ Avoid large area cost
○ Avoid potential routing hotspots

119

More Fracturability …

120

● Support traditional modes (27⨯27,18x18)
● Add new low-precision modes

■ 4x 9b multiply/MAC
■ 8x 4b multiply/MAC

Keeping it low-cost is key …
● No additional routing ports
● Max reuse of existing multiplier arrays

[8:0]

S1 << 9

co
n

st
an

t

4:2 C1 (27b)

S2 << 18

4:2 C2 (54b)

[35:9][17:0]

[53:36]

4:2 C3 (64b)

CPA (36b) CPA (36b)

[35:0][63:36]

ch
ai

n
 i

n

Output Registers

18x18 9x9 9x18 9x18

M1 M2 M3 M4

Flexible
Shift-Add

9×18

9×18

9×9

18×18

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18

121

Block area overhead:

 12%
which is equivalent to

 ~0.6%
in DSP-rich devices

DSP
Block
Area

FPGA
Core
Area

… and runs at the same frequency

Low Area Overhead

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18

3 CNNs on 2 accelerator
architectures

 1.3x 15%
in case of 8-bit precision

 1.6x 30%
in case of 4-bit precision

122

Higher
Perf.

Less
Logic
Util.

Higher
Perf.

Less
Logic
Util.

Application-level Results

Intel DLA

ASU CNN Accelerator

A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs," FPL18

Industrial Adoption

9x9

9x9

9x9

9x9

123

ALU

9x9

9x9

9x9

Negate

Negate

Negate

Intel Agilex DSP Xilinx Versal DSP

… both support similar INT9 mode!

4x9b, 2x18b, 1x27b 27bx24b, 3x9b

Going beyond Precision
● Special dedicated links

○ Semi-2D DSP-to-DSP interconnect

124
S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19

2D Systolic Array

Transform into
columnar structure

Going beyond Precision
● Special dedicated links

○ Semi-2D DSP-to-DSP interconnect
● Better localization of data

○ Embedded RF to reuse data

125
S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19

2D Systolic Array

Transform into
columnar structure

Huge Energy Savings

126
S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture for Multi-precision Deep Neural Networks," FCCM19

DSP48

R
el

at
iv

e
En

er
gy

Schedule

FPGA DL
Accelerators &
Architectures

9:30-10:00

FPGA
Architecture
Through a DL

Lens

9:05-9:30

Break (10 mins)

Traditional
FPGA Blocks for

DL

10:10-10:40

New
DL-optimized
FPGA Blocks

10:40-12:00

Break (10 mins)

New DL-optimized FPGA Blocks

128

New
DL-optimized
FPGA Blocks

DL-Specific Fabric
Blocks: Commercial

Tensor Blocks
(Vaughn)

129

Achronix Speedster MLP
● Small & medium int & fp formats

○ Decomposable multipliers
● Input limit: provide extra inputs

from closely coupled BRAM
● Enables 16x 8-bit multiples
● Or 32x 4-bit multiplies

130

131

Intel Stratix 10 NX:Tensor Block
30x int8 multipliers instead of 2x int18 multipliers

● Or 60x int4 multipliers
● Also block floating point bfp16 and bfp12

(~int8/int4 with 10-element shared exponent)

30x int8

Focusing on
this mode

132

Tensor Block int8
30x int8 multipliers instead of 2x int18 multipliers

480
inputs

480
outputs

DSP block:
96 inputs

DSP block:
72 outputs

133

Tensor Block int8

480
inputs

72
outputs

30x int8 multipliers instead of 2x int18 multipliers
Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators

Dedicated Cascades: Cheap

134

Tensor Block int8
30x int8 multipliers instead of 2x int18 multipliers
Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators
Limit Inputs: Broadcast one set of inputs to all dot-10 engines

320
inputs

72
outputs

135

Tensor Block int8
30x int8 multipliers instead of 2x int18 multipliers
Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators
Limit Inputs: Broadcast one set of inputs to all dot-10 engines
Limit Inputs: Ping-pong input reuse chain loaded from the block above

80
inputs

72
outputs

136

Tensor Block int8
30x int8 multipliers instead of 2x int18 multipliers
Limit Outputs: Arrange multipliers as 3x dot-10 engines + accumulators
Limit Inputs: Broadcast one set of inputs to all dot-10 engines
Limit Inputs: Ping-pong input reuse chain loaded from the block above

80
inputs

72
outputs

15x peak int8 TOPS but
significant I/O

constraints

Tensor Block: 3 Modes to Give Interconnect Options

Tensor Mode: 30x int8
Broadcast & preload inputs
Three dot-10 137

Vector Mode: 6x int8
No input restriction
one dot-6

Scalar Mode: 3x int8
No input or output
restrictions

Can CNNs Exploit S10 Tensor Blocks? → HPIPE

Dense weights
● Tensor mode, preload activations,

broadcast weights
○ Except depthwise conv: scalar mode

● 5x speedup vs. DSP blocks
● Less than 15x peak, but well above any other

reported results

Sparse weights
● Vector mode

○ 1.9x speedup vs. DSP blocks
138

MobileNetV1 - V3: Multiple
convolution types

Yes!
Need all modes

M. Stan, et al, “HPIPE NX: Boosting CNN Inference Acceleration Performance with AI-Optimized FPGAs,” FPT, Dec. 2022.

Can RNNs & LSTMs Exploit S10 Tensor Blocks? → NPU

d

139

Broadcast
Weights1

1

Load
Activations22

Yes!

Need some batching

● Preload activations, in batches
of 3

● Broadcast weights
● 3.5x speedup vs. DSP blocks

A. Boutros, et al “Beyond Peak Performance: Comparing The Real Performance of AI-Optimized FPGAs and GPUs,” FPT, 2020.

Tensor Block Takeaway

Large gains possible with a more “coarse-grained” block

Have to minimize/re-use/restructure interconnect

● Not trivial to use
● Can’t just recompile your RTL/HLS → restructure your computation

140

New
DL-optimized
FPGA Blocks

DL-Specific Fabric
Blocks: Academic

Tensor Blocks
(Vaughn)

141

Tensor Slices

142

Tensor/matrix operations are at
the heart of Deep Learning

Matrix multiplier using Logic
Blocks and DSP Slices is
inefficient (~4x slower and ~10x
larger than an ASIC)

Can we perform matrix
multiplication on an FPGA more
efficiently?

Arora et al. “Tensor Slices to the Rescue: Supercharging ML Acceleration on FPGAs”, ISFPGA 2021
Arora et al., “Tensor Slices: FPGA Building Blocks For The Deep Learning Era,” ACM TRETS 2022

Why add Tensor Slices?

Compute density. Pack more
compute in the same area footprint.

Reduce routing wire usage

Reduce area and increase
frequency for implementing ML

designs

Coarse grained. Faster
compilation.

Update tools, provide libraries, etc.

Less generic/flexible than a typical
FPGA. But worth it because of so

many ML applications.

143

Tensor Slice: High level diagram

144

Tensor Slice: High level diagram

145

Tensor Slice: Design Space

146

Architecture
● Systolic
● Dot-product based

Size (Number of PEs)
● 2x2, 4x4, 8x8, 16x16
● Something else

Operations to support
● Matrix matrix multiplication
● Matrix vector multiplication
● Element wise operations

How to lay them out in the FPGA
● Along columns
● Grouped together

FPGA area to spend on them
● 5%, 10%, 20%, 30%,…
● Replace all DSP Slices with

Tensor Slices

Precisions to support
● Integer (int4, int8, int16)
● Floating point (bf16, fp16)

Tensor Slice: Architecture and Layout

147

Systolic Architecture Arranged in columns

Tensor Slices: Modes, Sizes, Precision

148

8x8, 4x4 For non-DL
applications

Precisions: int8, int16, fp16, bf16

Tensor Slice: Compute Throughput and Area

149

Koios DL benchmark

3.5x 52%

Die Area Devoted to Tensor Slices

Peak Compute vs. Tensor Slice Die Area
Used Device Area

Tensor Slice: Frequency

150

60%

Tensor Slice: Interconnect

151

52%

Tensor Slice: Deep Neural Network Overlay

152

NPU-like Accelerator

1.6x

Precision=int8

NPU workload

Schedule

FPGA DL
Accelerators &
Architectures

9:30-10:00

FPGA
Architecture
Through a DL

Lens

9:05-9:30

Break (10 mins)

Traditional
FPGA Blocks for

DL

10:10-10:40

New
DL-optimized
FPGA Blocks

10:40-12:00

Break (10 mins)

Schedule

FPGA DL
Accelerators &
Architectures

9:30-10:00

FPGA
Architecture
Through a DL

Lens

9:05-9:30

Break (10 mins)

Traditional
FPGA Blocks for

DL

10:10-10:40

New
DL-optimized
FPGA Blocks

10:40-12:00

Break (10 mins)

DL-Specific Fabric
Blocks: Compute RAMs

(Vaughn)

155

New
DL-optimized
FPGA Blocks

 Many flavors have been proposed:
◦ ReRAM based
◦ SRAM based
◦ DRAM based
◦ 3D stacking based

Add compute to the Block RAMs on FPGA

Compute-In-Memory
Also called Processing-In-Memory (PIM)

Bring computation closer to the storage

Reduces data movement, hence reducing energy and latency

156

Bit-Serial Computing

One word of operation

Sum available over
multiple cycles

Precision agnostic! Great for DL!
157

Bit-Line Computing

158

Logic-in-memory technology

A AND B
Logic-in-Memory [JSSC’16]
Compute Caches [HPCA’17]

Adding Processing Elements inside a SRAM

Neural Cache [ISCA’18]

159

What’s the main principle here?

Get two bits (one from each operand), add them, write result back to the RAM

Two approaches:

Activate two
wordlines at the

same time

Use a
dual-ported

memory

Robustness 😟 Area😟 160

Block RAMs on FPGAs are already dual ported! :)

161

High Level Operation

162

Note the transposed
data layout

N

High Level Operation

163

Read on Port
#1

Read on Port
#2

Write on any
port

N

CoMeFa RAMs: High Level Operation

164

Read on Port
#1

Read on Port
#2

Write on any
port

N

CoMeFa RAMs: High Level Operation

165

Read on Port
#1

Read on Port
#2

Write on any
port

N

CoMeFa RAMs: High Level Operation

166

Read on Port
#1

Read on Port
#2

Write on any
port

N

Design Space

Getting 2 operands in 1 cycle
● Activating two wordlines
● Use dual ported memory

Programming the RAM

● Workload specific FSM
● Stored program

Number of PEs and SAs
● PEs = SAs = Number of bitlines
● PEs = SAs = Number of data lines
● Or something in between

Loading and unloading data
● Transpose in soft logic
● Use RAM with transposable cells
● Transpose in DRAM controller

Architecture of a PE
● Operations (add, logical, etc)
● Predication
● Configurability

Signaling instructions to the RAM
● Write to a special address
● Repurpose a signal on the

interface 167

Processing Element

168

Mux to enable any
function of 2 inputs

Basically a dynamic
“LUT”

One Operand Outside RAM (OOOR) Operations

169

Programming the RAM

170

Observation

The BRAM has now become a SIMD processor

171

Observation: Enhanced “effective” bandwidth

Internal (physical) geometry of the BRAM is more squarish than the “external”
(logical) geometry

Example: Consider 16 Kilobit RAM

Logical geometries available: 512x32, 1024x16, 2048x8, 4906x4,...

Physical geometry: 128x128 (128 word lines, 128 bitlines)

Why is this done?

Physical layout issues (pitch matching), ECC, Routing interface limitations

Can access more number of bits inside the RAM (assuming we have enough
sense amps) 172

Overhead

CCB [1] CoMeFa-D [2] CoMeFa-A [2]

Clock duration 60% 25% 125%

Area (block) 16.8% 25.4% 8.1%

Area (chip) 2.5% 3.8% 1.2%

PEs=SAs=# Bitlines
Activate two wordlines
Less-configurable PE

PEs=SAs=# Bitlines
Use dual-ported’ness
More-configurable PE

PEs=SAs=# Datalines
Re-use (cycle) SAs
Use dual-ported’ness
More-configurable PE

173

[1] X. Wang et al., "Compute-Capable Block RAMs for Efficient Deep Learning Acceleration on FPGAs," FCCM 2021

[2] Arora et al., "CoMeFa: Compute-in-Memory Blocks for FPGAs," FCCM 2022

Compute Throughput (Mid-Size, Arria 10-Like)

174

Speedup - Microbenchmarks (8- to 20-bit precision)

175

Speedup - DNN Overlay (NPU-Like)

176

~2.5x speed-up at 4-bit, but only ~1.2x at 8-bit
N2 cycles for N-bit serial multiplication

Out-of-Fabric Blocks
(Andrew)

177

New
DL-optimized
FPGA Blocks

Interposers

178

Interposers

179

This is how Xilinx creates
large multi-die FPGAs

This is how Intel integrates
FPGAs with transceiver

and HBM “chiplets”

Future
www.crossroadsfpga.org

http://www.crossroadsfpga.org

AI Targeted Chiplets

180

Stratix 10 uses interposer technology to
integrate FPGA with transceiver chiplets

AI Targeted Chiplets

181

Stratix 10 uses interposer technology to
integrate FPGA with transceiver chiplets

What if we swap some/all with AI chiplets?

AI

AI Targeted Chiplets

182

Stratix 10 uses interposer technology to
integrate FPGA with transceiver chiplets

What if we swap some/all with AI chiplets?

AI

E. Nurvitadhi et al, "In-Package Domain-Specific ASICs for Intel Stratix 10 FPGAs: A Case Study of Accelerating Deep Learning using TensorTile ASIC", FPL,
2018
E. Nurvitadhi et al, "Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs", FCCM, 2019

AI Targeted Chiplets

183

Stratix 10 uses interposer technology to
integrate FPGA with transceiver chiplets

What if we swap some/all with AI chiplets?

AI

E. Nurvitadhi et al, "In-Package Domain-Specific ASICs for Intel Stratix 10 FPGAs: A Case Study of Accelerating Deep Learning using TensorTile ASIC", FPL,
2018
E. Nurvitadhi et al, "Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs", FCCM, 2019

Batch-1 Inference of
Sequence Models
16x lower latency

34x higher energy efficiency
vs. Volta GPU

Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&

Not all applications benefit from the bit-level flexibility of FPGAs

184

Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&

Not all applications benefit from the bit-level flexibility of FPGAs

(1) Array of Specialized Vector Processors
Efficiently execute parallel workloads on

SW-programmable cores with programmable
bus-based routing between them

185

Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&

Not all applications benefit from the bit-level flexibility of FPGAs

(1) Array of Specialized Vector Processors
Efficiently execute parallel workloads on

SW-programmable cores with programmable
bus-based routing between them

(2) System-level Packet-switched NoC
Decouple compute & communication

for easier system integration

186

Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&

Not all applications benefit from the bit-level flexibility of FPGAs

(1) Array of Specialized Vector Processors
Efficiently execute parallel workloads on

SW-programmable cores with programmable
bus-based routing between them

(2) System-level Packet-switched NoC
Decouple compute & communication

for easier system integration

187

Xilinx Versal: AI Engines

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

188
S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96

Xilinx Versal: AI Engines

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

16 KB
Inst

Mem

32b Scalar
RISC Unit

Fixed Point
Vector Unit

Float Point
Vector Unit

Load
Store
Unit

Each AI Engine is a VLIW vector proc.
Can execute 7 simultaneous OPs

2 vec ld + 1 vec st + 1 vec op + 2 scalar ops
Clocked at 1 GHz

128 INT8 MACs per clock → 256 GOPS
Biggest device has 400 AIEs → >100 TOPS

189
S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96

Xilinx Versal: AI Engines

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96

Each AI Engine can read/write directly to
its 4 adjacent memory blocks (NSEW)

190

Xilinx Versal: AI Engines

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

Each AI Engine can read/write directly to
its 4 adjacent memory blocks (NSEW)

Hardware locks for sync between AIEs
→ Memory block can act as ping-pong
buffer between two pipelined AIEs

191
S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96

Xilinx Versal: AI Engines

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

AI Engine Mem

Mem AI Engine

S. Neuendorffer and others, "The Evolution of Domain-Specific Computing for Deep Learning" IEEE Circuits and Systems Magazine 21.2 (2021): 75-96
192

Each AI Engine can read/write directly to
its 4 adjacent memory blocks (NSEW)

Hardware locks for sync between AIEs
→ Memory block can act as ping-pong
buffer between two pipelined AIEs

Bus-based reconfigurable routing
→ AIE can can read/write data from/to the
memory of any other AIE
→ Allows efficient broadcast / multicast

Xilinx Versal: Overview

It is getting harder to design & close timing for large FPGA systems
&

Not all applications benefit from the bit-level flexibility of FPGAs

(1) Array of Specialized Vector Processors
Efficiently execute parallel workloads on

SW-programmable cores with programmable
bus-based routing between them

(2) System-level Packet-switched NoC
Decouple compute & communication

for easier system integration

193

Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
→ HBM/DDR, PCIe, Ethernet

HBM Controller

HBM Controller

PC
Ie PC

Ie

194

Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
→ HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

HBM Controller

HBM Controller

PC
Ie PC

Ie

M1

M3

M2

M4

195

Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
→ HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication
→ between modules, modules ↔ hard blocks

HBM Controller

HBM Controller

PC
Ie PC

Ie

M1

M3

M2

M4

196

Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
→ HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication
→ between modules, modules ↔ hard blocks

Closing timing is a nightmare!
→ esp. with long CAD runtimes

HBM Controller

HBM Controller

PC
Ie PC

Ie

M1

M3

M2

M4

197

Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
→ HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication
→ between modules, modules ↔ hard blocks

Closing timing is a nightmare!
→ esp. with long CAD runtimes

HBM Controller

HBM Controller

PC
Ie PC

Ie

M1

M3

M2

M4

Can’t harden efficient
busses because of the

FPGA’s reconfigurability!!

198

Why NoCs for FPGAs?

Modern FPGAs with many high-BW interfaces
→ HBM/DDR, PCIe, Ethernet

Large FPGA systems consist of many modules

Tremendous on-chip communication
→ between modules, modules ↔ hard blocks

Closing timing is a nightmare!
→ esp. with long CAD runtimes

HBM Controller

HBM Controller

PC
Ie PC

Ie

M1

M3

M2

M4

NoCs to the rescue!
Easier timing closure

Faster system integration
More efficient communication

199

Why NoCs for FPGAs?

Many architecture questions …

What are NoC specifications?
How to connect to programmable routing?

Soft vs. Hard links?
Cost of embedding a hard NoC?

How can applications benefit from it?

HBM Controller

HBM Controller

PC
Ie PC

Ie

M1

M3

M2

M4

NoCs to the rescue!
Easier timing closure

Faster system integration
More efficient communication

M. Abdelfattah and others, "Design and applications for embedded networks-on-chip on FPGAs", Transactions on Computers (TC), 2016 200

Xilinx Versal NoC

● 128b NoC links @ 1GHz → match DDR channel bandwidth
● Modified mesh topology (rows squished to top & bottom) → match FPGA column layout
● Only way to access external memory from the FPGA fabric
● 10s -100s fabric ports to FPGA logic presented as standard AXI interfaces

I. Swarbrick and others, "Versal network-on-chip (NoC)" IEEE Symposium on High-Performance Interconnects (HOTI), 2019 201

Beyond-FPGA Devices
(Andrew)

202

New
DL-optimized
FPGA Blocks

The Rise of “Beyond-FPGA” Devices

Intel FPGA
System-in-Package

(Chiplets)
Xilinx Versal ACAP Future 3D-Integrated

Devices
203

The Rise of “Beyond-FPGA” Devices

Intel FPGA
System-in-Package

(Chiplets)
Xilinx Versal ACAP Future 3D-Integrated

Devices

Reconfigurable Acceleration Devices (RADs)

204

New Territories … New Evaluation Tools!

205

Routing Fabric?

Logic Blocks?

Hard Blocks?

Functionality?

Granularity?

Quantity?

FPGA CAD
Algorithms?

Programming
Model?

NoC(s) spec? Abstraction? NoC Placement?

System-Level
Interconnect

FPGA Fabric
Coarse-Grain
Accelerator

Blocks

New RADs
(Reconfigurable Acceleration Devices)

New Territories … New Evaluation Tools!

206

Routing Fabric?

Logic Blocks?

Hard Blocks?

Functionality?

Granularity?

Quantity?

FPGA CAD
Algorithms?

Programming
Model?

NoC(s) spec? Abstraction? NoC Placement?

System-Level
Interconnect

FPGA Fabric
Coarse-Grain
Accelerator

Blocks

Huge Design Space
to Explore …

Need new tools!New RADs
(Reconfigurable Acceleration Devices)

The RAD Flow

207

RAD-Sim
(System Simulation)

NoC Traffic Application
Performance

Functional
Verification

NoC
Specs

Module
Assignment

Arch.
ParamsSystemC

Accelerator
Blocks

SystemC
Application
Modules

RTL
Application
Modules

RAD-Gen
(System Implementation)

FPGA Implementation
Results

(Resource Util, Freq, Power)

Accelerator Block
Results

(Silicon Area, Freq, Power)

RTL
Accelerator
Blocks

Enhanced
FPGA CAD

RTL
System
Modules

A. Boutros and others, "Architecture and Application Co-Design for Beyond-FPGA Reconfigurable Acceleration Devices", IEEE Access (2022)
Github Repo: https://github.com/andrewboutros/rad-flow

https://github.com/andrewboutros/rad-flow

The RAD Flow

208

RAD-Sim
(System Simulation)

NoC Traffic Application
Performance

Functional
Verification

NoC
Specs

Module
Assignment

Arch.
ParamsSystemC

Accelerator
Blocks

SystemC
Application
Modules

RTL
Application
Modules

RAD-Gen
(System Implementation)

FPGA Implementation
Results

(Resource Util, Freq, Power)

Accelerator Block
Results

(Silicon Area, Freq, Power)

RTL
Accelerator
Blocks

Enhanced
FPGA CAD

1

RTL
System
Modules

A. Boutros and others, "Architecture and Application Co-Design for Beyond-FPGA Reconfigurable Acceleration Devices", IEEE Access (2022)
Github Repo: https://github.com/andrewboutros/rad-flow

https://github.com/andrewboutros/rad-flow

The RAD Flow

209

RAD-Sim
(System Simulation)

NoC Traffic Application
Performance

Functional
Verification

NoC
Specs

Module
Assignment

Arch.
ParamsSystemC

Accelerator
Blocks

SystemC
Application
Modules

RTL
Application
Modules

RAD-Gen
(System Implementation)

FPGA Implementation
Results

(Resource Util, Freq, Power)

Accelerator Block
Results

(Silicon Area, Freq, Power)

RTL
Accelerator
Blocks

Enhanced
FPGA CAD

12

RTL
System
Modules

A. Boutros and others, "Architecture and Application Co-Design for Beyond-FPGA Reconfigurable Acceleration Devices", IEEE Access (2022)
Github Repo: https://github.com/andrewboutros/rad-flow

https://github.com/andrewboutros/rad-flow

The RAD Flow

210

RAD-Sim
(System Simulation)

NoC Traffic Application
Performance

Functional
Verification

NoC
Specs

Module
Assignment

Arch.
ParamsSystemC

Accelerator
Blocks

SystemC
Application
Modules

RTL
Application
Modules

RAD-Gen
(System Implementation)

FPGA Implementation
Results

(Resource Util, Freq, Power)

Accelerator Block
Results

(Silicon Area, Freq, Power)

RTL
Accelerator
Blocks

Enhanced
FPGA CAD

12 3

RTL
System
Modules

A. Boutros and others, "Architecture and Application Co-Design for Beyond-FPGA Reconfigurable Acceleration Devices", IEEE Access (2022)
Github Repo: https://github.com/andrewboutros/rad-flow

https://github.com/andrewboutros/rad-flow

Summary

211

● FPGA architecture has always evolved to meet the needs of
key markets … DL is a big one!

212

● FPGA architecture has always evolved to meet the needs of
key markets … DL is a big one!

● Traditional blocks optimized for DL (logic blocks, DSPS)
○ Maintain FPGA generality
○ Achieve considerable gains at minimal cost

213

● FPGA architecture has always evolved to meet the needs of
key markets … DL is a big one!

● Traditional blocks optimized for DL (logic blocks, DSPS)
○ Maintain FPGA generality
○ Achieve considerable gains at minimal cost

● New DL-targeted blocks (tensor blocks, compute-in-BRAMs)
○ New class of specialized FPGAs for DL
○ Higher gains at a higher cost

214

● FPGA architecture has always evolved to meet the needs of
key markets … DL is a big one!

● Traditional blocks optimized for DL (logic blocks, DSPS)
○ Maintain FPGA generality
○ Achieve considerable gains at minimal cost

● New DL-targeted blocks (tensor blocks, compute-in-BRAMs)
○ New class of specialized FPGAs for DL
○ Higher gains at a higher cost

● Heterogeneous reconfigurable devices
○ Monolithic → NoCs + coarse-grained accelerators
○ 2.5D Integration → DL chiplets
○ 3D Integration?

215

Thanks!

216

References

VTR: https://github.com/verilog-to-routing/vtr-verilog-to-routing

COFFE: https://github.com/vaughnbetz/COFFE

Koios: https://tinyurl.com/vtrkoios

EB benchmark framework:

E. Roorda, S. Rasoulinezhad, P. H. W. Leong, and S. J. E. Wilton, “FPGA Architecture
Exploration for DNN Acceleration”, ACM Transactions on Reconfigurable Technology and
Systems, Vol. 15, No. 3, May 2022. [Online]. Available: https://doi.org/10.1145/3503465

217

https://github.com/verilog-to-routing/vtr-verilog-to-routing
https://github.com/vaughnbetz/COFFE
https://tinyurl.com/vtrkoios
https://doi.org/10.1145/3503465

References

● A. Boutros et al., "Embracing Diversity: Enhanced DSP Blocks for
Low-Precision Deep Learning on FPGAs," FPL18,
doi:10.1109/FPL.2018.00014.

● S. Rasoulinezhad et al., "PIR-DSP: An FPGA DSP Block Architecture
for Multi-precision Deep Neural Networks," FCCM19,
doi:10.1109/FCCM.2019.00015.
https://github.com/raminrasoulinezhad/PIR-DSP

218

https://github.com/raminrasoulinezhad/PIR-DSP

References

● Aman Arora et al., “Tensor Slices: FPGA Building Blocks For The Deep
Learning Era,” ACM TRETS (Dec 2022), doi.org/10.1145/3529650.

● A. Boutros et al., "Beyond Peak Performance: Comparing the Real
Performance of AI-Optimized FPGAs and GPUs," International
Conference on Field-Programmable Technology (ICFPT), 2020, pp.
10-19, doi:10.1109/ICFPT51103.2020.00011.

● Seyedramin Rasoulinezhad et al., “Rethinking embedded blocks for
machine learning applications,” ACM TRETS, (Nov 2021)
doi:10.1145/3491234. http://github.com/raminrasoulinezhad/MLBlocks

219

https://doi.org/10.1145/3529650
https://doi.org/10.1145/3491234
https://doi.org/10.1145/3491234
http://github.com/raminrasoulinezhad/MLBlocks

References

Neural Cache

C. Eckert et al., "Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks," 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), 2018, pp. 383-396, doi: 10.1109/ISCA.2018.00040.

CCB

X. Wang et al., "Compute-Capable Block RAMs for Efficient Deep Learning Acceleration on FPGAs," 2021 IEEE 29th
Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2021, pp. 88-96, doi:
10.1109/FCCM51124.2021.00018.

CoMeFa

A. Arora et al., "CoMeFa: Compute-in-Memory Blocks for FPGAs," 2022 IEEE 30th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2022, pp. 1-9, doi: 10.1109/FCCM53951.2022.9786179.

220

