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Fig. 1. Summary of the LogicNets design flow.

I. EXTENDED ABSTRACT

Deep Neural Networks (DNNs) have a wide application

scope beyond computer vision tasks, promising to replace man-

ual algorithmic implementations in applications ranging from

large-scale physics experiments to next-generation network

security. Such applications may require data processing rates

in the millions of samples per second and sub-microsecond

latency, which is possible with customized FPGA or ASIC

implementations. We present a novel method called LogicNets

for co-design of DNN topologies and hardware circuits that

maps to a very efficient FPGA implementation to address the

needs of such applications.

It is possible to convert a neuron with quantized inputs and

outputs into a lookup table (LUT) by evaluating all input-

output combinations, as shown in prior work by Nazemi et

al. [1]. However, for a neuron with γ inputs of β-bits each,

the LUT has 2γ·β entries and this technique cannot be applied

to most existing DNNs due to dense connectivity and high

activation bitwidth. Instead of mapping existing neural networks

to LUTs, we propose to co-design DNN topologies in a way

that avoids intractibly large LUTs. The key to designing such

DNN topologies is to keep the connectivity γ and activation

bitwidth β small. Figure 1 captures the key parts of the

LogicNets approach. We first define a set of Neuron Equivalents

(NEQs) in PyTorch that map to Hardware Building Blocks

TABLE I
HIGHLIGHTS FROM LOGICNETS RESULTS ON THE CHOSEN TASKS.

Name Topology β γ Accuracy LUT Fmax

JSC1 4-layer FC 2 3 84.36% 185 1,529 MHz
JSC2 4-layer FC 3 4 87.22% 12,691 471 MHz
JSC3 5-layer FC 3 4 90.88% 34,740 383 MHz

NID1 2-layer FC 2 7 83.88% 3,586 811 MHz
NID2 4-layer FC 3 5 88.44% 12,162 586 MHz
NID3 4-layer FC 2 7 91.43% 27,129 475 MHz

JSC accuracy metric is average area under RoC curve for all classes.

(HBBs) generalized as X-input Y -output LUTs. Each NEQ

is constrained to have a small number of inputs, such that

X = γ · β maps to at most tens or hundreds of 6:1 FPGA

LUTs. Subsequently, we define and train sparsely-connected

neural networks in PyTorch and convert the trained networks

to netlists in Verilog for synthesis, place and route with Vivado

to produce an FPGA bitfile. By exposing the DNN as a netlist,

we are also able to exploit synthesis optimizations in existing

EDA tools to further compress the DNN to use fewer resources.

We evaluate our approach on two tasks with very high

intrinsic throughput requirements. The first task is the Jet

Substructure Classification (JSC) task from [2], part of the L1

trigger at the CERN LHC. The second task is Network Intrusion

Detection (NID) by classification of malicious network packets

from [3]. We report out-of-context synthesis results targeting

a Xilinx xcvu9p-flgb2104-2-i FPGA. Our results in

Table I indicate that the combination of sparsity and low-bit

activation quantization can yield high-speed circuits with small

logic depth, low LUT cost and competitive accuracy with

throughput in the hundreds of millions of samples per second.
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