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Abstract—Deep learning neural networks have gained much
attention in recent research. Excellent results in various domains
have proved the usefulness of such algorithms. However, training
a deep learning network requires substantial computational
effort; therefore, resource-constrained systems like edge devices
in the IoT domain still lack full implementations, and training
of the network is offloaded to the cloud. Online or unsupervised
training of the network, on the other hand, is often a must if
the system has to adjust to possible drift of the environment
parameters or there is not enough data available initially. This
paper proposes the first Xilinx Zynq FPGA (Field Programmable
Gate Array) based implementation of the contractive autoencoder
(CAE), including training of the network.

I. INTRODUCTION

Deep learning (DL) algorithms have been proved to be

useful in various domains: image recognition, natural language

translation, human activity recognition, and anomaly detection

[1], [2], [3]. However, the current state-of-the-art solutions

rely on graphical processing units and other general-purpose

hardware accelerators.

The DL algorithms extract the essential features of the

input signal automatically; this enables automatic learning and

increases the DL modeling capabilities [4].

Before the deployment, DL algorithms need training, which

requires substantial computational power. Therefore, the net-

work is either trained offline, or using the cloud [5].

The broader focus of this work is related to the unsu-

pervised DL algorithms and implementations on resource-

constrained systems. One class of this kind of methods are

autoencoders, which reproduce the input signal to its output.

The middle layer of an autoencoder contains compressed

features [6], which can be used for different purposes, like

data-compression [7].

[8] describes the framework for FPGA based forward pass

execution of various DL networks but does not include the

training, which has to be carried out separately.

Considering autoencoders, [9] provides the study of an

FPGA based sparse stacked autoencoder, but again, it does

lack the training.

Using high-level synthesis is another approach found in

the literature; [10] provides the solution to train stacked au-

toencoders. However, the proposed solution lacks the training

speed and the contraction term.

The main contribution of this work is to provide the first

hardware-based implementation of the Contractive Autoen-

coder (CAE) [11]. Also, this paper follows proposals to use

shared weights on the input and output layers [12] and fixed-

point representations for weights and biases [13].
The proposed architecture uses node-level parallelism. For

back-propagation, additional parallelism was achieved by max-

imally reusing the computational results.
The functionality of the solution was verified using the

downscaled MNIST dataset [14]. The 38μs total execution

time for a forward pass and training yields to a maximum of

26KS input rate.
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