
An Efficient FPGA-based Architecture for
Contractive Autoencoders

Madis Kerner∗, Kalle Tammemäe∗, Jaan Raik∗, Thomas Hollstein∗†
∗Tallinn University of Technology, Tallinn, Estonia

†Frankfurt University of Applied Sciences, Frankfurt, Germany

Email: madis.kerner@taltech.ee, kalle.tammemae@taltech.ee, jaan.raik@taltech.ee, hollstein@fb2.fra-uas.de

Abstract—Deep learning neural networks have gained much
attention in recent research. Excellent results in various domains
have proved the usefulness of such algorithms. However, training
a deep learning network requires substantial computational
effort; therefore, resource-constrained systems like edge devices
in the IoT domain still lack full implementations, and training
of the network is offloaded to the cloud. Online or unsupervised
training of the network, on the other hand, is often a must if
the system has to adjust to possible drift of the environment
parameters or there is not enough data available initially. This
paper proposes the first Xilinx Zynq FPGA (Field Programmable
Gate Array) based implementation of the contractive autoencoder
(CAE), including training of the network.

I. INTRODUCTION

Deep learning (DL) algorithms have been proved to be

useful in various domains: image recognition, natural language

translation, human activity recognition, and anomaly detection

[1], [2], [3]. However, the current state-of-the-art solutions

rely on graphical processing units and other general-purpose

hardware accelerators.

The DL algorithms extract the essential features of the

input signal automatically; this enables automatic learning and

increases the DL modeling capabilities [4].

Before the deployment, DL algorithms need training, which

requires substantial computational power. Therefore, the net-

work is either trained offline, or using the cloud [5].

The broader focus of this work is related to the unsu-

pervised DL algorithms and implementations on resource-

constrained systems. One class of this kind of methods are

autoencoders, which reproduce the input signal to its output.

The middle layer of an autoencoder contains compressed

features [6], which can be used for different purposes, like

data-compression [7].

[8] describes the framework for FPGA based forward pass

execution of various DL networks but does not include the

training, which has to be carried out separately.

Considering autoencoders, [9] provides the study of an

FPGA based sparse stacked autoencoder, but again, it does

lack the training.

Using high-level synthesis is another approach found in

the literature; [10] provides the solution to train stacked au-

toencoders. However, the proposed solution lacks the training

speed and the contraction term.

The main contribution of this work is to provide the first

hardware-based implementation of the Contractive Autoen-

coder (CAE) [11]. Also, this paper follows proposals to use

shared weights on the input and output layers [12] and fixed-

point representations for weights and biases [13].
The proposed architecture uses node-level parallelism. For

back-propagation, additional parallelism was achieved by max-

imally reusing the computational results.
The functionality of the solution was verified using the

downscaled MNIST dataset [14]. The 38μs total execution

time for a forward pass and training yields to a maximum of

26KS input rate.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 5 2015.

[2] J. Schmidhuber, “Deep Learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[3] T. Plotz and Y. Guan, “Deep Learning for Human Activity Recognition
in Mobile Computing,” Computer, vol. 51, no. 5, pp. 50–59, 2018.

[4] H. F. Nweke, Y. W. Teh, M. A. Al-garadi, and U. R. Alo, “Deep
learning algorithms for human activity recognition using mobile and
wearable sensor networks: State of the art and research challenges,”
Expert Systems with Applications, vol. 105, pp. 233–261, 9 2018.

[5] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-
based activity recognition: A Survey,” Pattern Recognition Letters, vol.
119, pp. 3–11, 2 2018.

[6] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality
of Data with Neural Networks,” Science (New York, N.Y.), vol. 313, no.
July, pp. 504–507, 2006.

[7] O. Yildirim, R. S. Tan, and U. R. Acharya, “An efficient compression of
ECG signals using deep convolutional autoencoders,” Cognitive Systems
Research, vol. 52, pp. 198–211, 2018.

[8] L. D. Medus, T. Iakymchuk, J. V. Frances-Villora, M. Bataller-
Mompean, and A. Rosado-Munoz, “A Novel Systolic Parallel Hard-
ware Architecture for the FPGA Acceleration of Feedforward Neural
Networks,” IEEE Access, vol. 7, pp. 76 084–76 103, 2019.

[9] M. G. Coutinho, M. F. Torquato, and M. A. Fernandes, “Deep neural
network hardware implementation based on stacked sparse autoencoder,”
IEEE Access, vol. 7, pp. 40 674–40 694, 2019.

[10] J. Maria, J. Amaro, G. Falcao, and L. A. Alexandre, “Stacked Autoen-
coders Using Low-Power Accelerated Architectures for Object Recogni-
tion in Autonomous Systems,” Neural Processing Letters, vol. 43, no. 05,
pp. 445–458, 2016.

[11] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: explicit invariance during feature extraction,” in Proceed-
ings of The 28th International Conference on Machine Learning (ICML-
11), no. 1, 2011, pp. 833–840.

[12] A. Suzuki, T. Morie, and H. Tamukoh, “FPGA implementation of
autoencoders having shared synapse architecture,” in PLoS One, vol. 13,
no. 03, 2018, pp. 1–22.

[13] J. Jiang, R. Hu, D. Wang, J. Xu, and Y. Dou, “Performance of the fixed-
point autoencoder,” Tehnicki vjesnik - Technical Gazette, vol. 23, no. 02,
pp. 77–82, 2016.

[14] Y. LeCun, C. Cortes, and C. J. Burges, “MNIST handwritten
digit database,” ATT Labs, vol. 2, 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

230

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00062

