
ZRLMPI: A Unified Programming Model for
Reconfigurable Heterogeneous Computing Clusters

Burkhard Ringlein∗†, Francois Abel†, Alexander Ditter∗, Beat Weiss†, Christoph Hagleitner†, and Dietmar Fey∗
†IBM Research Europe, ∗Friedrich-Alexander University Erlangen-Nürnberg

{ngl, fab, wei, hle}@zurich.ibm.com, {burkhard.ringlein, alexander.ditter, dietmar.fey}@fau.de

Abstract—Over the past two decades, the Message Passing
Interface (MPI) has evolved as the de-facto standard for pro-
gramming High-Performance Computing (HPC) clusters. Its
widespread utilization led to the rapid development of appli-
cations and high reusability. Meanwhile, energy- and compute-
efficient devices such as Field-Programmable Gate Arrays (FP-
GAs) are stepping into modern data centers and HPC clusters
to address the nearing end of technology scaling. This combi-
nation of traditional CPU servers and FPGA nodes leads to
Reconfigurable Heterogeneous HPC (ReH2PC) systems that are
particularly cumbersome to program because of the absence of
a standard programming model. This work advocates the use of
MPI to program such ReH2PC clusters and presents a proof of
concept based on a cross-compiler, a High-Level Synthesis library,
a C++ library, an FPGA- and a CPU-runtime environment. The
result is a one-click solution, which compiles a standard MPI
application for a ReH2PC cluster.

I. PROGRAMMING REH2PC CLUSTERS

Today’s High-Performance Computing (HPC) systems can

be classified into three classes. The first and traditional HPC

class solely consists of CPU servers, while the second class,

typically referred to as Reconfigurable HPC (ReHPC), is

only comprised of Field-Programmable Gate Arrays (FPGAs)

nodes. The third class is named Reconfigurable Heteroge-

neous HPC (ReH2PC) because it comprises a mixture of

the CPU servers from the first class and the FPGA nodes

from the second class. Unfortunately, despite many attempts,

no standard has yet emerged for the programming of such

heterogeneous clusters. This absence of agreement hinders the

rapid development of applications using FPGAs in HPC, and

motivated us to reconsider the use of the Message Passing

Interface (MPI) for ReH2PC platforms. MPI is widely adopted

in the HPC community and we want to demonstrate that, with

its standardized syntax and semantics, it also fits as a single

programming model for ReH2PC clusters. To avoid re-coding

every application for every specific heterogeneous cluster, we

propose a High-Level Synthesis (HLS) approach, where the

application code (for e.g. C/C++) is turned into a hardware

design description at some point in the compilation flow. An

HLS design is typically coded as a set of processes inter-

connected with object-oriented stream constructs (e.g. AXI4

streams). Since MPI already defines the parallel execution and

communication of the node processes, we think that it is a

proper forking point to enter the FPGA HLS synthesis.
Our ambition is to take existing MPI-based applications

that were developed for CPU clusters, and execute them

on a ReH2PC cluster without any code modifications. Our

int msg[1];
int next_node = (rank + 1) % size;
int previous_node = rank -1;
if(rank == 0) {
msg[0] = 0xcaffee;
MPI_Send(&msg[0], 1, MPI_INTEGER, 1, 0, MPI_COMM_WORLD);
MPI_Recv(&msg[0], 1, MPI_INTEGER, size-1, 0, MPI_COMM_WORLD, &status);

} else {
MPI_Recv(&msg[0], 1, MPI_INTEGER, previous_node, 0, MPI_COMM_WORLD, &status);
MPI_Send(&msg[0], 1, MPI_INTEGER, next_node, 0, MPI_COMM_WORLD);

}

Listing 1. Snippet of an MPI message ring example. Rank 0 is executed on
the CPU, all other cases on FPGAs. A rank is a unique id per MPI node.

proof of concept uses virtual machines for the CPUs and a

set of network-attached FPGAs managed by the framework

described in [1].

II. ZRLMPI: MPI FOR REH2PC

The goal of ZRLMPI is to bring CPUs and FPGAs to

work together efficiently using a single source of code. As an

example, consider the MPI code of Listing 1, which forwards

a message around a ring of multiple nodes from a sender

(rank 0) back to that same node. In such a programming

approach, the user is not expected to annotate the MPI code

or to use HLS tools her/himself in order to bring the program

to a ReH2PC cluster. This step is automated by our cross-

compiler (ZRLMPIcc) that identifies the parts of the program
that will be executed on FPGAs and transforms these parts

from the original C code to synthesizable HLS code. To iden-

tify these parts, ZRLMPIcc uses a user-defined rankfile
that maps every rank to a specific physical node. This is

analogous to the affinity concept of MPI. To implement the

MPI synchronization and collective routines via the underlying

cluster communication protocol, we developed an HLS core

called Message Passing Engine (MPE). This MPE is

merged with the application HLS code by ZRLMPIcc and is

synthesized to a partial bitstream. In parallel, the CPU specific

parts are also emitted by ZRLMPIcc and compiled together

with the ZRLMPI software runtime library (ZRLMPIlib).
This ZRLMPIlib is the software counterpart of the MPE that

synchronizes CPU and FPGA nodes. To distribute the partial

bitfiles and software binaries as specified by the rankfile,
we’ve developed a deployment framework (ZRLMPIrun)
using the FPGA management runtime of platform [1].

REFERENCES

[1] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey,
“System Architecture for Network-Attached FPGAs in the Cloud using
Partial Reconfiguration,” in 2019 29th International Conference on
Field Programmable Logic and Applications (FPL), Barcelona, Spain:
IEEE, 2019, pp. 293–300. DOI: 10.1109/FPL.2019.00054.

220

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00051

