
An Analytical Model of Memory-Bound
Applications Compiled with High Level Synthesis

Maria A. Dávila-Guzmán∗, Rubén Gran Tejero†, Marı́a Villarroya-Gaudó‡ and Darı́o Suárez Gracia§
DIIS-I3A, Universidad de Zaragoza — HiPEAC Network of Excellence

Email: ∗angelicadg@unizar.es, †rgran@unizar.es, ‡mvg@unizar.es, §dario@unizar.es

I. INTRODUCTION

HLS tools simplify programming for FPGAs, but generating

highly tuned code still remains a challenge because CPU

and GPU optimization techniques are not always directly

applicable to FPGA. Besides, bitstream generation takes a long

time, preventing any “trial-and-error” optimization process. To

address this issue, programmers can follow two alternatives.

Either they write well-known code patterns from previous

explorations, or they rely on pre-synthesis analytical models

for estimating performance.

The delay of HLS generated code can be attributed to two

main components: compute and memory. While existing ana-

lytical models focus more on the compute part [1], [2], or ker-

nel pipeline, this work proposes a memory-focused approach

for Intel FPGAs that accurately models the Global Memory

Interconnect (GMI), connecting the kernel pipeline with the

off-chip DRAM. Our analytical model mainly requires static

information and can be easily plugged into existing models to

support memory-bound applications, or, even, integrated into

HLS tools to guide optimizations.

II. PROPOSED MODEL AND RESULTS

In HLS source code, each reference to an external variable

constitutes a global access. Since the main sources of kernel

stalls are these global accesses, the GMI implements several

strategies to maximize DRAM throughput and kernel pipeline

flow. Internally, the GMI architecture has two components: 1)

Load/Stores Units (LSUs), tracking in flight memory accesses,

and 2) Arbiters, ordering read and write accesses.

Depending on the access pattern, Intel FPGA SDK defines 5

LSU types: two for the Local Memory Interconnect (Constant-

Pipelined and Pipelined) and the rest for the GMI: Burst-

Coalesced, Prefeching, and Atomic-Pipelined [3]. Each LSU

type provides a different maximum bandwidth, being the burst-

coalesced with aligned modifier the most efficient type because

it maximizes DRAM effective-utilization, which is crucial for

memory-bound applications.

The selection of LSU type for each access is defined during

RTL generation, which takes a small part of the whole compi-

lation process, and the analysis of the generated RTL provides

insights on the DRAM commands performed accessing data.

This information merged with a DRAM model [4] enables to

accurately estimate the kernel execution time.

Our proposed model stems from a detailed study of the

generated RTL, instantiated IPs, and FPGA architecture and

condenses the factors causing the memory delay for all possi-

ble LSU types, vectorization factors, strides, and DRAM para-

meters. Thus, for 9 HPC benchmarks, the average estimation

error (difference between measured and estimated execution

time) of our model is 10%. Please, see [5] for more details.

Table I compares the estimation error of our work with two

state-of-the-art models [1], [2] for a Burst Coalesced Aligned

μbenchmark (BCA) [3] and a Vector Add application (VA)

with 2 DRAM configurations. In all cases, our estimations are

more precise, specially for faster memory, because we take into

account LSU modifiers, contrary to [1], and do not rely on a

predefined memory controller overhead as HLScope+ does [2].

TABLE I
EXECUTION TIME ESTIMATION ERROR FOR BURST COALESCED ALIGNED

AND VECTOR ADD BENCHMARKS ON AN STRATIX 10 GX FPGA

Bench. DDR4 Wang HLScope+ This work
(MHz) [%] [%] [%]

BCA 1866 17.3 12.7 5.6
BCA 2666 69.6 57.8 4.7
VA 1866 19.3 21.0 5.1
VA 2666 67.9 63.3 1.0

To conclude, our model estimates the execution time of

memory-bound applications with an average error of 10%.

Since projections state a 7% of annual memory-bandwidth

increase against a 48% of annual logic resources in new

FPGAs, which, in turn, will result in an increase in memory

bounded applications, upcoming FPGA systems will require

faster and more accurate behaviour models in order to ease

programmer’s labour.

ACKNOWLEDGMENT

This work was supported by grants TIN2016-76635-C2-1-

R, Aragón Government (T58 17R), a Santander-Unizar col-

laboration grant, and a donation by Intel.

REFERENCES

[1] Z. Wang, B. He, W. Zhang, and S. Jiang, “A performance analysis
framework for optimizing opencl applications on fpgas,” in HPCA, 2016.

[2] Y. K. Choi, P. Zhang, P. Li, and J. Cong, “HLScope+: Fast and accurate
performance estimation for FPGA HLS,” in ICCAD, 2017.

[3] Intel, “Intel FPGA SDK for OpenCL,” 2018.
[4] H. Zheng and Z. Zhu, “Power and performance trade-offs in contemporary

DRAM system designs for multicore processors,” IEEE Transactions on
Computers, 2010.

[5] M. Dávila, R. Gran, M. Villarroya, and D. Suárez, “Analytical model of
memory-bound applications compiled with high level synthesis,” 2020.
[Online]. Available: https://arxiv.org/abs/2003.13054

218

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00049

