
Early-stage Automated Identification Tool
for Shared Accelerators

Parnian Mokri
Tufts University

Medford, Massachusetts 02155

Email: parnian.mokri@tufts.edu

Mark Hempstead
Tufts University

Medford, Massachusetts 02155

Email: mark.hempstead@tufts.edu

The use of application-specific accelerators to improve

systems’ energy-efficiency and performance is becoming more

prevalent. To overcome the tight area budget on embedded

systems we propose an early detection tool that complements

existing High-level Synthesis tools by identifying computa-

tionally similar synthesizable kernels that are used to build

Shared Accelerators (SAs). SAs are specialized hardware

accelerators that execute very different software kernels but

share the common hardware functions between them. SAs can

provide increased coverage if similarities between the dataflow

and control flow of seemingly very different workloads are

detected. Existing methods use either dynamic traces or ana-

lyze register transfer level (RTL) implementations to find these

similarities which requires deep knowledge of RTL and the

time-consuming RTL design process.

Fig. 1. Block diagram of the ReconfAST methodology.

This work leverages abstract syntax trees (ASTs) gener-

ated from LLVM’s-clang to discover similar kernels among

workloads. ASTs are compact, unlike control and dataflow

representations, but contain extra syntax and variable node

ordering that complicates workload comparison. As shown in

Figure 1 our methodology, ReconfAST, transforms the AST

into a new clustered AST (CAST) representation that further

removes unneeded nodes and uses a flexible tree-traversal

and regular expression matching scheme to detect and group

common node patterns. ReconfAST transforms ASTs into a

hardware implementable tree by removing whitespace nodes

to remove differences that are resulted from coding style. We

run a dynamic analysis of these static structural similarities,

to further refine SA candidates by making sure these maps

represent hot code. Finally, we prune the candidates based on

their static data dependency class. This step will remove cases

when a variable inside the acceleration candidate depends

Shared Maps

Unique to
Sten2

Unique to
Viterbi

OUT

CNTRL

IN

AXI
STREAM

BUS

Sten2d

Viterbi

OUT

OUT

In

In

CTRL

CTRL

AXI

Fig. 2. The two Dedicated Accelerators (on the left) are replaced by one
Shared Accelerator (on the right), increasing accelerator’s coverage and saving
area.

bfsB
bfsQ

fft-strided

gemm-bb

gemm-ncu

md-Grid NW
spmvE

stencil2d

stencil3d
viterbi

bfsB

bfsQ

fftStrided

gemm-bb

gemm-ncu

md-Grid

nw

spmvE

stencil2d

stencil3d

viterbi

81 74 0 98 0 45 0 0 72 72

87 74 72 74 0 74 0 72 74 74

0 0 54 24 0 0 24 24 50 54

17 0 0 99 0 0 0 94 17 99

99 0 0 98 0 98 0 90 98 98

78 78 0 0 11 7 5 11 0 11

96 0 0 0 0 95 0 98 12 99

78 5 5 18 9 5 2 18 5 62

98 0 7 99 94 0 7 0 7 94

89 11 50 0 89 0 98 11 99 43

0 0 3 3 0 3 99 3 3 0

Fig. 3. Maximum Dynamic Coverage (percentage of total execution time)
measured of the matching (isomorphic) sub-graphs found between the CASTs
of each workload.

on outside variables. In addition, the tool warns the user in

cases where many data dependencies are found inside the

acceleration candidate since that would limit the ability of

HLS tools to use common hardware optimizations to improve

performance and energy efficiency. Figure 2 shows a simplified

example of a system with accelerators for two MachSuite

benchmarks, Stencil2D and Viterbi. Figure 3 shows that the

common source code between stncil2d and vterbi was 94%

of stencil2D hot-code. Therefore, a common accelerator can

accelerate both workloads.

The presence of data dependencies, the cost of reconfigura-

tion, and the difference between the size of accelerators affect

the efficiency of SAs. We have designed over 700 of these

accelerators using Vivado HLS. A good Shared Accelerator,

on FPGAs has comparable speedup to dedicated accelerators

and reduces the resources required for FPGA implementations:

37% FFs, 16% DSPs, and 10% on LUTs on average.

217

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00048

