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Abstract—In the process of tomographic reconstruction, the at-
titude and center point of a specimen, from which the projection
data are collected, suffer from misalignment due to mechanical
imperfection and calibration error. Such misalignment leads to
poor reconstruction quality. And effective automatic alignment
approaches have been proposed. The alignment approaches are
of good use for kinds of application scenarios such as X-CT
and electron tomography. These scenarios demand not only high
performance, but also that the component of automatic alignment
can be integrated and upgraded in the whole solution. Thus, we
propose an FPGA accelerator for state-of-the-art tomographic
alignment algorithm. We first introduce a multi-ray access
approach that modifies the order of data access for easier on-
chip data management. Making use of BRAMs on FPGAs and
effective local data management strategy, data reuse is reinforced,
and data transfer latency with DRAM is covered by computation.
Also, we introduce an FPGA-customized processing engine at a
low cost to improve data throughput. Moreover, a streaming
structure with multiple paralleled PEs further improves the
performance of our algorithm. Experiments demonstrate that
our accelerator achieves a 44.5x speed-up for the state-of-the-art
alignment on Xilinx ZCU102 over a 16-thread multicore CPU
implementation, and a 1.60x speed-up with 7.8x energy reduction
over an OpenCL implementation on Nvidia Titan V.

I. INTRODUCTION

Tomography is a noninvasive imaging technique that com-

bines penetrating waves and computed tomographic recon-

struction to get 3D structures of different kinds of the speci-

men. The specimens are firstly processed by a scanning device,

such as electron microscopy or CT scanner, to obtain a series

of projections of the specimen. This process can be described

by a ray transform [1]. Then, the projections are reconstructed

to a 3D structure using the inverse transformation of the

ray transform. To obtain a high-quality 3D structure, it is

necessary to know the accurate configurations with which the

projections are taken. However, due to mechanical instability

and specimen/scanner transformation, the recorded projections

do not precisely align with the planned configurations. Thus

it is necessary to recalculate the configurations before recon-

struction. This process is called alignment.

One type of popular alignment methods is to introduce

some fiducial markers embedded in the specimen. The high-

contrast markers can be tracked so that the relative motion of

the specimen is then calculated through the position change

of fiducial markers [6]–[8]. Despite its ability for accurate

alignment, the requirement for preset markers complicates

the specimen preparation process. The markers are usually

material with high-contrast like gold beads. This kind of par-

ticles leads to artifacts in reconstructions [10]. Those markers

also absorb almost all electron beams during scanning, which

worsens radiation damage to the specimen [11]. To get rid of

marker preset and radiation damages, other methods use image

features to replace the function of fiducial markers [2], [12].

Such methods require specific detectors for different kinds of

datasets [8], which damages their universality. Alternatively,

alignment algorithms based on maximizing the similarity

between reprojection of reconstructed result and projection

acquired by scanner have been proposed. Winkler and Tay-

lor [9] try different configurations in the parameter space

and choose the one with the best cross-correlation coefficient

between the reprojection and the acquired projection. Then,

methods that formulate the parameters’ search into optimiza-

tion problems were proposed to reduce time consumption [3]–

[5]. These kinds of methods are both universally adaptive

and accurate for tomography alignment, which makes them

useful in these kinds of application scenarios, such as X-CT,

electron tomography, MRI and etc.. With the all-in-one trend

of tomography equipment [13], there is an urgent need for an

embedded system for alignment and reconstruction, to enhance

the integration level and performance.

For this purpose, we design an FPGA-accelerated stream

structure for tomography alignment. To improve the perfor-

mance, we use an on-chip storage and data transfer strategy

suitable for the tomography alignment method. A targeted PE

design is also proposed to reduce data conflict and increase

data throughput. The experiments show a 44.5× speed-up

over 16-thread multicore code on Intel Xeon E5-2650 v3,

and 1.60× speed-up with 7.8x energy reduction over OpenCL

implementation on Nvidia Titan V. Our designs for key pro-

cesses used in tomographic alignment also perform better than

previous works.

II. AUTOMATIC ALIGNMENT ALGORITHM

In the tomography alignment, we need to clarify several

critical variables: we note the projection data as g, which is

a stack of 2D images obtained by the scanning device. θ is

the projection configuration that describes both the rotational

and the translational positions where g is obtained. f(θ) is

the reconstruction, which is a 3D image calculated from the g
at the guess of the projection configuration θ. And R(θ)f
stands for the reprojection of f using the configuration θ,
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Algorithm 1 Process of automatic alignment method.

Input: Initial guess for parameters θ(0), projection data g
Output: Aligned parameters θ(k+1), reconstruction f (k+1)

1: k = 0, θ(0) = θ̄(0) = θ̃
2: while not converged do
3: f (k) = argminf ||R(θ̄(k))f − g||2
4: θ(k+1) = argminθ ||R(θ)f (k) − g||2
5: θ̄(k+1) = θ(k+1), k = k + 1

where R is the ray transform operator. The state-of-the-art

alignment algorithm for tomography alignment corrects θ by

iteratively minimize the deviation between Rf and g using

several optimization methods. For each iteration, two core

processes are carried out: f(θ̄) is firstly calculated from g by

an inverse transformation of the ray transform with θ̄ which

is a configuration copy of θ. Then, the configurations θ are

calibrated by minimizing the deviation between R(θ)f(θ̄) and

g. The specific expression is shown in (1). In this equation, θ̄
is an auxiliary variable to separate the calibration of θ and the

calculation of f .

min
θ,θ̄

∥∥R(θ)f(θ̄)− g
∥∥2 s.t. θ̄ = θ

where f(θ̄) = argminf
∥∥R(θ̄)f − g

∥∥2 . (1)

To further explain the process, the pseudo-code for this algo-

rithm is listed in Algorithm 1. The core processes mentioned

above are at line 3 and line 4. We solve the minimization

at line 3, which is the reconstruction process, by calculating

the weighted sum of ray values that pass through point r.

Specifically, the process is expressed as:

f(r, θ̄) =
∑
θ̄

W (Mθ̄, r)

∫
R2

g(p, θ̄)δ(Mθ̄r − p)dp, (2)

where Mθ̄ is the 4 × 4 Euler transformation matrix of con-

figuration θ̄. W is the calculated weight related to Mθ̄ and r.∑
θ̄ adds up integrals for every single projection image.

On the other hand, the bottlenecks of the process in line 4

are the reprojection calculation and the partial derivative

projection calculation. For every projection data, the algorithm

calculates a line called ray that intersects with f . Then,

the basic elements of f that the line passes through are

accumulated to the projection data with the weight that is

related to the line length within the corresponding elements.

Those basic elements of the 3D image f are called volume

pixels (voxels). The calculations can also be expressed as:

R(θ)f =

∫
Lθ

f(r)d|r| (3)

∇θ(Rf)(θ) =

∫
Lθ

∇θf(r)d|r|, (4)

where Lθ = MθL0, and L0 is a reference line which is parallel

to the z-axis and intersects with the coordinate origin. The

main task is the optimization of those two core processes

mentioned above.

III. FPGA-SPECIFIC OPTIMIZATIONS

A. Multi-ray Access

For the calculation of (2), (3) and (4), the traditional way is

to trace the voxels traversed by certain rays, which is called

a ray-based strategy. Specifically, for the calculation of Rf ,

a ray-based strategy firstly calculates the rays corresponds

to Rf . Then, as illustrated in a simplified 2D example in

Fig. 1(a), it locates the voxels in f that is passed through

by those rays. The ray-based strategy has two shortcomings:

1) As shown in Fig. 1(a), the voxels traversed by the same

ray scatter in f . And due to the limited capacity of on-chip

BRAMs for a typical-sized f or Rf , we can only access it

from DRAM without the burst transfer’s help. 2) The voxel

data traversed by different rays overlap a lot. Those conflicts

are hard to predict and may lead to long read latencies.

To solve these problems, as Fig. 1(c) and Fig. 1(d) show,

instead of looking for voxels needed by certain rays, we access

voxel data from f sequentially and find out the rays that

traverse current voxel data. In this way, adjacent voxels can

always be traversed by adjacent rays, and both f and Rf can

be blocked to fit in the efficient but limited BRAM resources.

We buffer certain blocks of Rf data in BRAM according to

the voxel-based strategy to optimize data reuse. When part

of the block data is no longer useful, we load new data and

reorganize the data in BRAM.

/ //

Fig. 1. (a) Ray-based: ray track in data f . (b) Ray-based: data output in
data Rf . (c) Voxel-based: sequential data read from f . (d) Voxel-based: data
output in data Rf .

B. Dynamic Block and Arbitrarily Direction Sliding Window

The data transfer on the FPGA platform between pro-

grammable logic (PL) and DRAM is usually expensive and

untimely. In order to reduce the required AXI bandwidth and

avoid waiting on data, a proper technique should be applied.

With the help of the voxel-based calculation, as illustrated

in Fig. 2(a), the ray positions of certain voxel blocks can be

found within a window. The window’s size Swin is determined

by the voxel block size Sb. The centers of every voxel block

r0 are predetermined. And the centers of the projection blocks

Mθr0 are calculated at runtime depending on r0 and the Euler

matrix Mθ. For every voxel block, the voxels are projected to

the projection block with a calculated offset. In the meantime,

we load the projection data to be updated but not in BRAM

through AXI. When the projection operation for the current

block is done, the projection data is updated by the block

projection result. Any projection data that is no longer needed
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Fig. 2. Local data dependency demonstration.

for the calculation of the next block is then saved back to the

DRAM. Any data that is still useful is moved to a new place

according to the offset of the next voxel block, which makes

use of a sliding window technique. Specifically, as shown in

Fig. 2(b), after one voxel block is calculated, we save the data

within RS to the DRAM and move the data within RM from

the bottom right corner to the upper left corner. This part of

the data is well-organized, which will significantly reduce the

transmission overhead.

C. Processing Element (PE) Design

In the calculation of projection/back-projection, for every

voxel block, the voxels are projected to the projection block

with a specific offset. For a voxel position r = (x, y, z), it

is projected to position (u, v) = Mθr of the projection data.

Parameters u and v are not necessarily integers, so a region

sized 2×2 in the projection block needs to be accumulated by

voxel value multiplied by a calculated weight. For the ∇Rf
calculation, every single point of the integration in (4) requires

at least 3 other voxels for the calculation of gradient, as shown

in Fig. 3(b). However, those voxels are not saved on chip

due to limited BRAM resources. Making use of our multi-

( )( ) ( )

Fig. 3. Demonstration of detailed data dependency in an elementary operation.
(a) Projection. (b) Partial derivatives ∇θRf . (c) Resolved partial derivatives
calculation.

ray access strategy, we split the calculation of gradient into 4

independent parts, as shown in (5).

∇θf(r) =w0f(r) + wΔxf(r −Δx)

+ wΔyf(r −Δy) + wΔzf(r −Δz)
(5)

Thus one elementary operation of ∇Rf turns to four

operations ofRf with weights. As illustrated in Fig. 5(c), each

operation is applied when the corresponding voxel arrives.

BRAM latency limit determines that this kind of accumula-

tion cannot be finished in one cycle (latency = 5 cycles). So we

set up a dynamic sliding window in registers as a temporary

storage for accumulation .

( , ) ( , )
( , )

( , )
( , ) ( , )

Fig. 4. Write-back operation when new data arrives. The old data is firstly
re-arranged to allocate correct BRAM partitions before evicted from sliding
window.

As illustrated in Fig. 4, the sliding window prefetches the

data in the projection block before it is used, along with its

position in the BRAM as a reminder. When the new data

covers the old data and the old data is no longer needed, the

old data is written back to the BRAM at the position recorded

in the corresponding reminder. For the write-back operation,

there is a problem that the partition of the data in BRAM

cannot be predetermined. To finish the write-back operation

of mu within one cycle, we make a re-arrangement from mu

to m′
u to obtain a fixed BRAM partition mapping. Specifically,

if ui is odd, then mu will be vertically mirrored. If vi is odd,

mu will be horizontally mirrored. Then we write back the

mirror matrix mu′ according to write flags.

D. Streaming Architecture

The proposed architecture is shown in Fig. 5. It is

mainly composed of four parts: dynamic block manager,

processing element (PE), local data, and the

memory controller. The dynamic block manager is

Fig. 5. Architecture overview.

designed for the following functions: (1) providing block

update plan to guide the memory controller to update

local data, and (2) providing work schedules and projection

parameters for PEs.

The memory controller communicates with external

DRAM to update the local data according to the plan provided

by the dynamic block manager, including the update for the

on-chip reconstruction block, and the maintenance of the on-

chip projection sliding window shown in Fig. 2.

The local data module is composed of the partitioned

projection block in BRAMs and the reconstruction block in

a streaming buffer. The partition ensures that the PEs can do

read/write with no conflicts.

The processing element is used for accumulating (for-

ward projection) or updating (backward projection) the in-

tensity/gradient of voxels. The prefetcher fetches f /Rf
data from the local data to ensure instant usage by the
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compute unit. The temporary data is saved in the sliding

window described in Fig. 4. The save checker saves any

useless data that is still in the sliding window The PE is

designed as such to significantly improve the data reuse and

eliminate the latency of the compute unit data access.

IV. EXPERIMENT

To evaluate our design, the testing dataset that we choose is

a 72× conical-tilt projection series collected by FEI Tecnai

12 and 2048 × 2048 CCD Gatan camera with bin2. This

means the projection image resolution for the experiments is

1024×1024×72. The phantom size is set to 1024×1024×128.

The testing dataset is aligned using our automatic alignment

algorithm implemented on a Xilinx ZCU102 platform, which

consists of an UltraScale FPGA, quad Cortex-A53 proces-

sors, and 500MB DDR3. The Xilinx SDSoC Development

Environment v2018.3 is used for source compilation. The

configuration of our implementation is as follows: the number

of PEs nPE = 24, block size Sb = 64. Both the PE and

the data mover frequencies are set to 299.97MHz. The fixed-

point data type is set to 12bits for integer and 20bits for

fraction according to the estimation of total operation count

on single data. Admittedly, this data type leads to more logic

consumption compared with prior work [16], in which the

total word length ranges from 24bits to 29bits. But it provides

sufficient precision during the whole process of calculation

and convenience for data transfer. The resource utilization is

listed in Table I.

TABLE I
RESOURCE UTILIZATION ON XILINX ZCU102.

Detail DSP BRAM FF LUT
Consumed 1476 1352 200,062 235,928
Available 2520 1824 548,160 274,080
Utilization 58% 74% 36% 86%

To evaluate the performance, we compare the implemen-

tation on Xilinx ZCU102, Nvidia Titan V, and a 16-threads

OpenMP implementation on Intel Xeon CPU E5-2650 v3

platform. The performance data is shown in Table II. We

plugged in a power meter to the FPGA platform to measure

ZCU102’s runtime power. The runtime power of the Titan V

and that of the standalone CPU are estimated using the Nvidia-

smi and s-tui tools. In the experiment, the design implemented

on ZCU102 achieves a 44.5× speed-up over the parallel

CPU implementation, and 1.60× speed-up and 7.8× energy

efficiency over the Titan V implementation. The bottleneck

process ∇Rθf achieves 1.74× speed-up and 8.54× energy

efficiency over Titan V. We also evaluate implementations

of fixed-points data type on CPU/GPU, where operations on

fixed-point decimals are implemented by integer operations

and bitshifts. Due to the design of the instruction set on

modern CPU/GPUs, the execution efficiency of the float-point

version is even faster than that of the fixed-point version.

Furthermore, we compare our subfunctions, (a) the forwards

projection Rf and (b) the backward projection, to existing

works, using Giga Updates Per Second (GUPS). GUPS is

TABLE II
PERFORMANCE COMPARISON. TIMING FOR BOTH FPGA AND TITAN V

INCLUDES THE DATA TRANSFER OVERHEAD.

Device ZCU102 Titan V CPU
Precision 32bits fixed 32 bits float 32bits float
Rf (s) 2.24 3.59 54.1

∇Rθf (s) 11.95 20.85 645.1
Back-proj(s) 2.10 1.53 25.7
Summary(s) 16.3 26.0 725
Power(W) 24.1 118 49.0
Energy(J) 392.6 3064 3.552E4

a common metric for performance comparison of tomogra-

phy related implementations evaluated by different datasets

[16], [17]. Total updates can be calculated by voxel num ×
avg proj per voxel. For forward projection and backward

projection, it is voxel num× 72× 6.97 = 6.74E10. For the

calculation of ∇θRf , it is voxel num× 72× 6.97× 4× 5 =
1.35E12. The comparison with prior work, listed in Table III,

shows that our design outperforms existing implementations

of these subfunctions.

TABLE III
GUPS COMPARISON WITH RELATED WORKS.THE GUPS APPROXIMATION

IS FROM [16].

Ref method Device GUPS(FP) GUPS(BP) GUPS(∇θRf )
[14], 2008 FDK Virtex-4 - 1.0 -
[15], 2012 SF Virtex-5 LX155 0.9 - -
[16], 2015 EM Virtex-6 LX760 20.4 21.9 -
Our work WBP ZCU102 30.1 32.1 113

V. CONCLUSION

In this work, we propose an FPGA accelerator for the state-

of-the-art tomographic alignment algorithm. We introduce a

multi-ray access approach and an effective local data man-

agement strategy that makes use of BRAMs. They efficiently

compensate for the data transfer latency with DRAM and

make the best of data reuse. We then introduce an FPGA-

based processing engine to improve data throughput. Besides,

a streaming structure and multi-PE parallelization further

improve the performance. Experiments show a 44.5× speed-

up for the state-of-the-art alignment on Xilinx ZCU102 over a

16-thread multicore CPU implementation, and a 1.60× speed-

up with 7.8× energy reduction over an implementation on

Nvidia Titan V. Our design for key processes in tomographic

alignment also perform better than existing works. Moreover,

with the development of hardwares, our design is capable of

scaling with the performance of FPGAs with more powerful

memories and more on-chip resources.

VI. ACKNOWLEDGMENT

This work is partly supported by National Natural Science

Foundation of China (NSFC) under Grant No. 61520106004,

No. 11961141007, and No. 61631001, Beijing Academy of

Artificial Intelligence (BAAI), and State Grid Corporation

of China under Grant No. 5500-201958484A-0-0-00 “The

Research of Electric Power Artificial Intelligence Computing

Components Based on Heterogeneous Instruction Set.”

175



REFERENCES

[1] Solmon, C. Donald, “The X-ray transform,” Journal of Mathematical
Analysis & Applications, vol. 56, no. 1, pp. 61-83, 1976.

[2] R. Han, Z. Bao, X. Zeng, et al., “A marker-free automatic alignment
method based on scale-invariant features.” Journal of Structural Biology
vol. 186, no. 1, pp. 167-180, 2014.

[3] T. van Leeuwen, S. Maretzke, J. K. Batenburg, “Automatic alignment for
three-dimensional tomographic reconstruction,” Inverse Problems, vol.
32, no. 2, 2018.

[4] C. Yang, G. Ng, A. Penczek, “ Unified 3-D structure and projection ori-
entation refinement using quasi-Newton algorithm,” Journal of structural
biology, vol. 149, no. 1, pp. 53-54, 2005.

[5] S. Wen, G. Luo, “An Analytical Method of Automatic Alignment
for Electron Tomography,” Large-Scale Annotation of Biomedical Data
and Expert Label Synthesis and Hardware Aware Learning for Medical
Imaging and Computer Assisted Intervention, 2019, pp. 106-114.

[6] D. N. Mastronarde, S. R. Held, “Automated tilt series alignment and
tomographic reconstruction in IMOD,” Journal of structural biology, vol.
192, no. 2, pp. 102-113, 2017.
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