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Abstract—Faster-than-Nyquist (FTN) transmission employs
non-orthogonal signaling to improve spectral efficiency over con-
ventional orthogonal transmission at the Nyquist rate. However,
FTN signaling also introduces inter-symbol interference (ISI),
which must be mitigated through additional signal processing.
In this paper, we present a scalable FPGA-based architecture

for a turbo maximum-a-posteriori (MAP) equalizer based on the
Bahl-Cock-Jelinek-Raviv (BCJR) algorithm to mitigate the ISI. In
contrast to many existing hardware implementations of BCJR,
where the algorithm performs turbo decoding over a binary
alphabet for an already-equalized channel, our FPGA design
applies BCJR to non-binary signal constellations and for the
task of equalization. To the best of our knowledge, this is the first
published FPGA-based BCJR equalizer implementation suitable
for FTN applications, where a binary forward-error-correction
decoder is employed in tandem with the equalizer.
Through careful tradeoff selection and optimization of the

design space, our implementation achieves a maximum per-PE
throughput of 602 Mbps, and a total of 15.4 Gbps within the
constraints of a Xilinx UltraScale+ (xcvu13p) device.

I. Introduction

The increase in the amount of data traffic sent through the

communication network infrastructure has created a tremendous

strain on coherent optical transport networks. Therefore, sub-

stantially higher data rates, for example, per carrier data rates

of 1 Tbps and more are being targeted in the next generation

optical systems [1]. The associated high spectral efficiencies of

communication warrant the consideration of spectrally efficient

techniques such as Faster-than-Nyquist (FTN) signaling [2–

4]. From a practical implementation perspective, FTN is

particularly advantageous for transmission systems such as

coherent optical communication, where practical constraints

make applying higher-order modulation formats challenging.

However, the benefits of FTN come at the price of introducing

inter-symbol interference (ISI), which requires successful

mitigation through additional digital signal processing.

In communications literature, a number of low-complexity

ISI mitigation techniques have been investigated for FTN

systems, in the form of linear [5] and frequency-domain

equalization [6, 7] at the receiver, or pre-equalization at the

transmitter [8–12]. However, the performance of these methods

is not sufficient when the ISI due to FTN is severe. Instead,

in this paper we focus on mitigating ISI via the Bahl-Cocke-

Jelinek-Raviv (BCJR) algorithm based maximum a-posteriori

probability (MAP) equalization [4, 5, 13, 14], which provides

improved performance, and we investigate the requirements of

a practical and efficient hardware implementation in an FPGA.

To date, very few papers have focused on hardware imple-

mentation of FTN systems [3]. Hardware designs have been

proposed for transmitters [15, 16] as well as low-complexity

equalizers [17]; however, transmitters are much simpler than

decoders and low-complexity equalizers are significantly out-

performed by MAP-based approaches [4, 17].

Hardware designs for the MAP algorithm abound in the liter-

ature, implemented either as ASICs [18, 19] or in FPGAs [20–

24]. These MAP architectures are primarily designed for

decoding conventional convolutional and turbo codes operating

on a binary alphabet, and therefore have a limited number

of BCJR states. The relatively small state-space facilitates

storage in flip-flop registers, which allows prior designs to

simultaneously access the entire BCJR state space in the same

clock cycle. Other prior hardware MAP decoder designs have

been proposed for decoding non-binary turbo codes [25];

however, the short codeword lengths and limited dynamic

ranges of the state variables again permit an inefficient storage

allocation scheme.

In contrast, BCJR equalization for FTN systems requires a

significantly larger number of states due to the use of higher-

order modulation formats such as 16-ary quadrature amplitude

modulation (16-QAM) for increased spectral efficiency. For

this reason, the existing hardware decoder implementations [18–

24] cannot directly perform ISI equalization in FPGA-based

systems, as they would run out of flip-flop resources even in

the largest FPGAs available today: for example, a flip-flop-only

equivalent to the equalizer we propose here would offer only

a quarter of the bandwidth of our BRAM-based design in a

system with 64 BCJR states.

In this paper, we propose an efficient architecture for an

FPGA-based sliding-window max-log MAP algorithm [26]

for ISI mitigation, which is (a) directly applicable to FTN

receivers that exchange soft information with a low-density-

parity-check (LDPC) decoder in a turbo fashion [5], and

(b) scalable to 64 BCJR states and 64k LDPC codeword length

on a Xilinx UltraScale+ FPGA (xcvu13p), achieving a per-PE

throughput of 602 Mbps and an on-device total of 15.4 Gbps.

In contrast with previous architectures, we carefully optimize

the mapping of BCJR states to on-chip BRAM memories

and schedule operation to maximize BRAM port utilization,

which allows our design to support large BCJR state spaces.

We also describe tradeoffs between BCJR state variable

bitwidths and the need for periodic normalization, which allow

us to achieve high BRAM utilization. To the best of our

167

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00030



Fig. 1. Left: Nyquist sampling, each symbol is sampled when the interference
from the adjacent symbols is absent (at integer values of 𝑡). Right: Faster-than-
Nyquist sampling (symbol spacing reduced by 20%), leading to ISI from the
adjacent symbols.

knowledge, the proposed architecture is the first published

FPGA implementation of MAP equalization capable of direct

application in an FTN transmission system.

II. Theoretical Background

A. Faster-than-Nyquist signaling
Conventional data transmission in communication systems

relies on orthogonal linear modulation, known as “Nyquist”

signaling [27], in which adjacent pulses do not interfere

with each other. FTN signaling [2–4] deliberately violates

the orthogonality condition imposed by Nyquist’s criterion to

transmit the symbols “faster,” resulting in increased spectral

efficiency, i.e., bits/s/Hz. The equivalent baseband-transmitted

FTN signal can be written as

𝑠(𝑡) =
∑

𝑙

𝑥 [𝑙]𝑝(𝑡 − 𝑙𝜏𝑇),

where 𝜏 is the FTN-acceleration factor, 𝑙 is the symbol index,
1
𝜏𝑇 is the symbol rate, and 𝑝 is the 𝑇-orthogonal pulse-shaping
filter, typically a root-raised-cosine filter.

The benefits of FTN come at the cost of introducing ISI,

which stems from the overlapping pulses between symbols. This

is illustrated in Figure 1, for the example of 𝜏 = 1 (Nyquist) and
𝜏 = 0.8 (FTN). Therefore, an efficient FTN transmission needs
successful mitigation of the ISI via sophisticated equalizer

design. For this, we have adopted the MAP equalizer structure

from [5], which iteratively exchanges log-likelihood ratios

(LLRs) with an LDPC decoder, see Figure 2.

B. MAP equalization and BCJR
The BCJR algorithm, originally proposed for decoding binary

convolutional codes in [28], performs a forward-backward

recursion over a state transition map or trellis. In this paper,
we focus on a sliding-window max-log MAP algorithm, which

enables hardware-friendly small-block-length processing [26].

Since the FTN pulse 𝑝 is real-valued, the BCJR equalizer can
be applied to real and imaginary parts of the data separately,

which greatly reduces the state space [4]. As the first step

of the algorithm, a branch metric 𝛾 is computed in the log
domain, corresponding to the BCJR-state 𝑠 at time index 𝑘 , and

Fig. 2. Turbo BCJR equalization in conjunction with LDPC decoding. The
equalizer and the soft-in-soft-out decoder exchange soft information in the form
of extrinsic log-likelihood ratios in every turbo iteration, separately for each
orthogonal real dimension, i.e. the in-phase (I) and quadrature (Q) components
of the complex symbols [5].

Fig. 3. The forward-backward trellis diagram and data dependencies required
to compute 𝛼 and 𝛽 values.

constellation symbol index 𝑐 with 𝑚(𝑐) being the real-valued
constellation symbol according to [13, Eq. (7)] as

𝛾(𝑠, 𝑐, 𝑘) = LLRin (𝑐, 𝑘) + [𝑦(𝑘) − 𝑥(𝑐, 𝑠)] 𝑚(𝑐),

where LLRin (𝑐, 𝑘) is the a-priori symbol LLRs fedback from
the LDPC decoder in the previous turbo iteration, 𝑦(𝑘) is the
𝑘 th received symbol, and 𝑥(𝑐, 𝑠) is the noise-free transmitted
symbol after passing through the ISI channel. Thereafter, 𝛾 is
used to recursively compute the forward and backward metrics

𝛼 and 𝛽 according to [13, Eqs. (15)–(16)] as

𝛼(𝑠, 𝑘) =max
𝑐

[𝛼(𝑠, 𝑘 − 1) + 𝛾(𝑠, 𝑐, 𝑘)] , and

𝛽(𝑠, 𝑘) =max
𝑐

[𝛽(𝑠, 𝑘 + 1) + 𝛾(𝑠, 𝑐, 𝑘)] .

The computational schematics are illustrated in Figure 3. Next,

𝛼, 𝛽, and 𝛾 are combined to compute the output symbol-level
LLRs as

LLRout (𝑐, 𝑘) = max
𝑑

[𝛼(𝑠, 𝑘) + 𝛽(𝑠, 𝑘) + 𝛾(𝑠, 𝑐, 𝑘)] .

Finally, the symbol LLRs are converted to extrinsic bit-LLRs,

which are provided as inputs to the LDPC decoder [5].

In our FPGA implementation, we use a 16-QAM modulation

corresponding to 4 real-valued symbols per real dimension and

3 taps for the ISI channel, resulting in a 43 = 64-state BCJR
for each of the in-phase (I) and quadrature (Q) components.
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Fig. 4. Sliding window 𝑤 with overlap 𝑜 for a block of 𝑁 symbols for
equalization corresponding to one LDPC codeword.

Moreover, we evaluate varying window sizes 𝑤 and overlap
lengths 𝑜 for the sliding-window implementation, as shown
in Figure 4.

III. Architecture

A. Sources of parallelism
There are several sources of parallelism in the MAP estimation

algorithm. Within each window, the 𝛾s can be computed in
parallel, as can the output LLRs once 𝛼s, 𝛽s, and 𝛾s are known.
The 𝛼 computation for a given symbol, however, depends on the
𝛼s for the previous symbol, so must be computed sequentially
(and vice versa with 𝛽); the only parallelism for 𝛼 and 𝛽
computation is therefore across the encoder states 𝑑.
To overcome this, we employ a sliding-window tech-

nique [29] where the MAP equalizer is run independently

on small windows of ≥ 128 symbols overlapped by ≥ 16

symbols as shown in Figure 4 to ensure smooth 𝛼 and 𝛽
propagation. This offers additional parallelism (since windows

can be processed independently) at the cost of additional

computation (since the overhead segment is recomputed).

In decoders that operate on a binary alphabet, the values of

𝛼, 𝛽, and 𝛾 have a very limited range; consequently, very few
bits are required to represent them. In contrast, using BCJR

in the non-binary context of an FTN equalizer involves values

with a much wider range, dramatically increasing the BRAM

footprint.

Ranges can be reduced somewhat by normalizing 𝛼 and
𝛽 values after every step [30]. This results in the fewest bits
per value, but requires computing the max value across the

BCJR state space before starting each parallel step — a drastic

reduction in parallelism. In our architecture, we normalize 𝛼s
and 𝛽s periodically rather than after every step (see Figure 5),
and trade this off against the number of bits needed per value

(see Section IV).

B. Computation and memory access scheduling
The computation schedule of MAP processing element (PE),

illustrated in Figure 5, is split into two phases. In the first

phase (left-hand side), no LLRs can be produced because there

is no cell with both 𝛼 and 𝛽 ready. The computation therefore
proceeds by propagating 𝛼s left-to-right and 𝛽s right-to-left,
and computing the 𝛾s in the order required by the 𝛼s and 𝛽s.
At the end of this phase, all 𝛾s have been computed, as well
as the first half of the 𝛼s and the second half of the 𝛽s.
In the second phase, the middle columns of the window have

both 𝛼s and 𝛽s available, so those LLRs can be computed. At
the same time, the remaining 𝛼s and 𝛽s are computed. Across

Fig. 5. The proposed MAP decoder computation schedule for one window.
Colours represent different functional units, while the depth shows hardware
replicated to take advantage of the independent computations across the 𝑑 and
𝑐 dimensions. 𝜆 denotes output LLR values.

Fig. 6. Pipeline stalls (Reg) due to normalization (normalization interval 5).

the encoder state (𝑑) and constellation (𝑐) dimensions, the
computations are independent, so we replicate functional units

within the PEs across 𝑑 and 𝑐. Finally, each window can be
computed separately, allowing us to replicate PEs spatially on

the FPGA across the 𝑤 dimension. Within each window, 𝛼 and
𝛽 computation is limited by the periodic normalization. We
implement the max computation needed for normalization as a

three-cycle pipeline overlapped with writing back the computed

𝛼s and 𝛽s; if values are normalized every five cycles, this
allows five 𝛼s and 𝛽s to be computed in ten clock cycles (see
Figure 6).

Unlike prior, smaller FPGA works [20–24], we use BRAMs

to store the 𝛼, 𝛽, and 𝛾 values, which requires optimizing
memory and carefully scheduling BRAM accesses. To compute

one 𝛼 (or 𝛽), we need to read one previous 𝛼 (or 𝛽) and
𝑐 values of 𝛾. Since computations across the 𝑑 dimension
are independent, 𝑑 𝛼s (and 𝛽s) can be computed in parallel,
requiring 𝑑 parallel reads of 𝛼 (or 𝛽) in each PE. We map
these to BRAMs as shown in Figure 7. In the Xilinx FPGA we

use, BRAMs have 36-bit lines. If values are 9-bit fixed-point,

we need 𝑑
4
= 16 BRAMs to allow one PE to access 𝑑 arbitrary

𝛼s in parallel, and another 16 for the 𝛽s. For each 𝛼 (or 𝛽)
read to produce another 𝛼 (or 𝛽), a full constellation of 𝑐 𝛾s is

Fig. 7. BRAM partitioning example with a port width of 36 bits and 9-bit
fixed-point values.
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Fig. 8. BER vs. Eb/N0 in dB comparing floating-point MAP against fixed-point
(fxp) MAPs with different sliding-window sizes (𝑤) and overlaps (𝑜).

read at once, so multiple 𝛾s can be stored in each 36-bit line.

IV. Results

To validate design parameters such as bitwidths and window

size, we used Matlab to model a bit-accurate TX+RX FTN

system with acceleration 𝜏 = 0.84 and 16-QAM modulation

and an LDPC code of length 64k from the DVB-S2 digital

TV standard [31]. We implemented the receiver design in

Vivado HLS on a Xilinx UltraScale+ FPGA (xcvu13p).

A. Signal-to-noise performance
Figure 8 shows bit error rate (BER) vs. bit-energy-to-noise

power spectral density ratio (Eb/N0) for our FTN system with

(i) an idealized MAP decoder using a window of the entire

transmission block (64k symbols) and 64-bit floating-point

𝛼, 𝛽, and 𝛾 (blue), and (ii) 9-bit fixed-point versions of our
hardware implementation with normalization every five steps

and different window and overlap sizes (green, purple, and

yellow). The 128-symbol sliding window with a 16-symbol

overlap (purple) results in abundant parallelism at the cost of

only 0.2 dB of SNR drop.

B. Parallelism and throughput
Table I shows how varying window sizes affects the throughput

of one BCJR achievable for equalizing the block of received

samples corresponding to one 64k-bit codeword of the LDPC

code at an FTN acceleration factor 𝜏 = 0.84, assuming no area
constraints. Smaller window sizes permit more per-window

PEs, and higher potential throughputs of a full PE array. (clock

constrained to 250 MHz but sometimes achieved a higher

frequency, which causes small variations in the throughput/PE.)

Table II shows the resource utilization of a single PE

for a variety of sliding windows. LUT utilization does not

scale linearly with each sliding window (consistent with prior

work [23]). Optimal BRAM utilization is achieved at window

TABLE I
Without area limits, smaller windows permit more PEs and throughput.

max. # PEs window size throughput/PE max. potential throughput

450 128 436 Mbps 196 Gbps
240 256 427 Mbps 102 Gbps
128 512 427 Mbps 54 Gbps
64 1024 430 Mbps 27 Gbps
32 2048 396 Mbps 12 Gbps

TABLE II
Resource utilization for different sliding windows.

window size LUTs CLBs registers 18-kbit BRAMs

128 55312 10416 24901 130 (2.4%)
256 56200 10084 24907 130 (2.4%)
512 56509 9902 24936 130 (2.4%)
1024 57661 10562 24978 130 (2.4%)
2048 56344 9915 24983 216 (4%)

size 1024; with larger sizes, each 𝛼, 𝛽, and 𝛾 arrays exceed
the size of one BRAM block and require more BRAMs.

Tables III and IV show the resource footprints and through-

puts as bitwidths are traded off against normalization intervals

under the constraint that BER is negligible at an Eb/N0 of

9.6 dB. While the best per-PE BRAM utilization occurs at 9 bits,

frequent normalizations required by the small bitwidths create

an Amdahl bottleneck and limit full-FPGA throughput. Higher

bitwidths make normalization less frequent and increase per-PE

throughput, but fewer PEs fit on the FPGA, and throughput also

suffers. The highest total throughput is at 12 bits: normalizations

are rare, while BRAMs are fully utilized (3 values per 36-bit

line) and BRAM/LUT utilization percentages are balanced,

allowing 27 PEs to fit.

TABLE III
Bitwidth vs. normalization: single-PE area (window sizes 128 and 360).

# bits norm. int. LUTs DSPs registers 18-kbit BRAMs

w
in
d
ow
1
2
8 9 5 50164 (2.9%) 752 24901 130 (2.4%)

10 10 51379 (3.0%) 752 27853 194 (3.6%)
11 20 54993 (3.2%) 752 28527 194 (3.6%)
12 40 60739 (3.5%) 752 27355 194 (3.6%)
13 80 65146 (3.8%) 752 28202 194 (3.6%)

w
in
d
ow
3
6
0 9 5 50432 (2.9%) 752 24901 130 (2.4%)

11 20 56157 (3.2%) 752 28527 194 (3.6%)
12 40 61622 (3.6%) 752 27355 194 (3.6%)
13 80 66805 (3.9%) 752 28202 194 (3.6%)
15 320 75286 (4.4%) 752 28202 194 (3.6%)

TABLE IV
Bitwidth vs. normalization: throughput (window sizes 128 and 360).

# bits norm. int. throughput/PE #PEs total throughput

w
in
d
ow
1
2
8 9 5 436 Mbps 33 14.4 Gbps

10 10 517 Mbps 27 13.9 Gbps
11 20 557 Mbps 27 15 Gbps
12 40 570 Mbps 27 15.4 Gbps
13 80 602 Mbps 25 15.05 Gbps

w
in
d
ow
3
6
0 9 5 433 Mbps 32 14 Gbps

11 20 541 Mbps 27 15 Gbps
12 40 566 Mbps 27 15.31 Gbps
13 80 582 Mbps 25 14.74 Gbps
15 320 591 Mbps 21 12.53 Gbps

V. Conclusion

The scalable MAP decoder architecture we have presented is,

to the best of our knowledge, the first FPGA design to scale

to the sizes required by FTN applications. The architecture

combines careful optimization for BRAM utilization, as well as

a tradeoff between normalization and bit-widths used, achieving

up to 602 Mbps per PE or a total of 15.4 Gbps in a full Xilinx

UltraScale+ (xcvu13p) device.
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