
Low-Cost Approximate Constant Coefficient Hybrid
Binary-Unary Multiplier for DSP Applications

S. Rasoul Faraji
Department of ECE

University of Minnesota, Twin Cities

Minneapolis, MN, USA

faraj008@umn.edu

Pierre Abillama
Department of ECE

University of Minnesota, Twin Cities

Minneapolis, MN, USA

abill001@umn.edu

Kia Bazargan
Department of ECE

University of Minnesota, Twin Cities

Minneapolis, MN, USA

kia@umn.edu

Abstract—Multipliers are used in virtually all Digital Sig-
nal Processing (DSP) applications, such as image and video
processing. Multiplier efficiency has a direct impact on the
overall performance of such applications, especially when real-
time processing is needed, as in 4K video processing, or where
hardware resources are limited, as in mobile and IoT devices. We
propose a novel, low-cost, low energy and high-speed approximate
constant coefficient multiplier (CCM) using a hybrid binary-
unary encoding method. The proposed method implements a
CCM using simple routing networks with no logic gates in
the unary domain, which results in more efficient multipliers
compared to Xilinx LogiCORE IP CCMs and table-based KCM
CCMs on average. We evaluate the proposed multipliers on 2-D
discrete cosine transform and fast Fourier transform algorithms
as two common DSP modules. Post-routing FPGA results show
that the proposed multipliers can improve the {area × delay
cost, and energy consumption per sample} of 8-bit fixed-point
2-D discrete cosine transform on average by {33%, 36%}.
The improvement for 128-point 16-bit fixed-point fast Fourier
transform on these metrics is {45%, 54%}. Moreover, the
throughput of the proposed 2-D discrete cosine transform and
128-point fast Fourier transform architectures are on average
1.04× and 1.76× of the throughput of the binary architectures
implemented using Xilinx LogiCORE IP CCMs, respectively.

I. INTRODUCTION

Digital signal processing (DSP) blocks are widely used

in processing multimedia input, such as video, image and

cellular communication signals. Most applications require real-

time processing, with a demand for computationally intensive

DSP functions while processing large amounts of data under

stringent power and battery usage constraints, especially in

mobile platforms such as cell phones and satellite applications.

The basic computational block of most DSP algorithms is the

multiplier unit. Many DSP algorithms that transform input

data from a domain into another one, such as discrete cosine

transform (DCT) and fast Fourier transform (FFT), use con-

stant coefficient multipliers (CCMs). The need for real-time

processing in today’s applications, e.g., 4K video processing,

motivated us to improve the performance of CCMs and to

propose highly efficient and low-latency DSP accelerators.

Two general techniques that have been explored to im-

plement constant coefficient multiplication are shift-and-add

tree [1] and table-based Constant-coefficient multiplier (KCM)

[2], [3]. The first technique shifts the input according to the

position of non-zero bits of the constant and then adds all

shifted-versions of the input together. The number of adders

depends on the number of non-zero bits of the constant [4].

The second technique splits the input into chunks of α bits

and then implements each partial product using look-up tables.

Finally, KCM adds all partial products together based on their

weights. For an FPGA architecture that uses K-input lookup

tables, α is set to K. The cost of KCM mostly depends on

the size of the constant while the cost of shift-and-add mostly

depends on the complexity of the constant. Moreover, KCM

can implement a real constant such as log(2) much more

accurately than the shift-and-add tree technique when the input

and output widths are limited [5].

The KCM and shift-and-add tree techniques implement

a CCM using binary encoding. An alternative encoding

called hybrid binary-unary (HBU) was introduced in our

recent paper [6], which represents the most significant bits

of a number using binary, and the lower bits in unary. In

the unary encoding, N parallel wires are used to represent

a number between 0..N . To represent the number P ≤ N ,

the first P wires are set to logic 1, and the rest to logic 0

(thermometer encoding). Computing using the HBU encoding

results in remarkable improvements in A × D compared to

binary. The HBU method is essentially an evolution of the field

of Stochastic Computing (SC) [7]–[12], which was improved

for better accuracy using deterministic coding [13]–[15], and

lower latency using parallelism [16], [17].

Our HBU work [6] showed results on isolated functions,

e.g., sin(15x), xγ , and tanh(x). We showed significant A×D
improvements over conventional binary (A×D was only 2.5%

of the binary at 8-bit resolution), which is remarkable but does

not necessarily convince application developers because the

real question is how much cost improvement we get when

using such techniques in a complete system. That is the main

contribution of this work. In this paper, we use the main idea

in [6] to propose a new architecture to implement approximate
constant coefficient multipliers and then we show an overall
system that uses the HBU CCMs. We evaluate the proposed

multipliers first by extracting the hardware costs for an FPGA

implementation and comparing it against Xilinx LogiCORE

IP CCMs and table-based KCM approach. Then we im-

plement the two most common DSP algorithms, 2-D DCT

and FFT algorithms, using the proposed CCMs. Compared

93

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00022

to the 2-D DCT implementation using Xilinx LogiCORE IP

CCMs, our architecture improves the A × D cost by 37%,

while increasing the throughput by a factor of 1.04x, reducing

power by 33%, and the energy per sample by 36%. Our

implementation of 8- to 128-point FFT reduces dynamic power

consumption and energy per sample consumption compared to

implementations using Xilinx LogiCORE IP CCMs by 16%

and 14%, respectively. (Table III).

II. THE PROPOSED APPROACH

In this section, we first discuss the basic idea of fully unary

and HBU computing, which was proposed in [6]. Then, we

use those ideas to develop our HBU CCM, and finally we

introduce the overall architecture of our method.

A. The Basic Idea (Our Previous Work)

Recently, the parallel thermometer number representa-

tion [17] was explored as an evolution of the original “ran-

dom”, serial bitstreams used in stochastic computing. This

approach represents an N -bit precision binary number using

2N parallel bits. Any integer 0 ≤M ≤ 2N −1, is represented
using 2N parallel bits where the first M bits are ones and

the rest are zeros. We call this representation fully unary.
The approach in [17] first converts binary numbers to the

thermometer format, then implements desired functions using

a “scaling network” (relevant to this paper) and “alternator

logic” (not relevant to this paper) in the fully unary domain,

and finally converts unary data back to the binary domain

using an adder tree.

Fig. 1 shows an example of this method on y = tanh(x),
where both input and output are scaled and quantized to the

set of integer numbers between 0 and 10. Part (a) of the figure

shows that for x = 5, y evaluates to 6. Note that both the input

(the boxes under the x axis) and the output (the boxes to the

left of the y axis) are in thermometer format: when x = 5, all
boxes from 1-5 are lit up. When x increases to 6 in part (b) of

the figure, it lights up three y outputs, because the slope of the

function at x = 5 is 3. Note that in this implementation, only

wires are used with no logic gates. Each wire is derived from

a gate in the thermometer encoder. The fanout of each gate is

determined by the derivative of the function at that point. Even

though it is very efficient for complex functions such as y =
tanh(x), the method of [17] can not beat conventional binary

implementations on simpler functions, such as high-resolution

CCMs, in terms of the area or A×D costs, especially as the

bit resolution increases due to the exponential growth of the

number representation (2N wires for an N -bit binary number).

To address the scalability problem, we proposed a hybrid
binary-unary (HBU) computing approach that can implement

most complex and some simple functions more efficiently [6].

The method takes advantage of the compact representation

of binary on higher bits of the number, and the simplicity

of the computation logic in unary on the lower bits of the

number. It calculates functions by first dividing the target

function into a few sub-functions, then implementing each sub-

function in the fully unary domain, and finally multiplexing

(a) x=5/10 (b) x=6/10

Fig. 1. Scaled y=tanh(x) quantized and implemented using the method of [17].

the appropriate sub-functions’ output to the final output. In

this method, the input range of each sub-function is a power

of 2 and would not necessarily have the same length. The

proposed method uses smaller individual or shared binary-

to-thermometer encoders to encode each region. The method

decomposes a target function as follows:

f(x) =

⎧⎨
⎩

f1(x) 0 ≤ x < x1
...
fK(x) xk−1 ≤ x < xk

(1)

where the input domain of any fi and fj (∀i �= j) do

not intersect. The advantages of the HBU approach are: (1)

preserving the higher bits of the binary data makes the encod-

ing logarithmic as in the conventional binary representation,

and (2) dividing each function into few sub-functions makes

both the unary encoding and the unary function evaluation

exponentially less costly. Therefore, the HBU approach can

remarkably improve the FPGA and ASIC implementation

costs compared to the conventional binary, classic stochastic

computing, and the fully unary approaches in terms of area,

power, energy and throughput [6].

The fully unary approach implements monotonic func-

tions using only wires and NO gates1 [6], [17], and non-

monotonic functions using wiring and XOR gates. However,

the HBU approach tries to split non-monotonic functions

into completely monotonic sub-functions. Therefore, because

of smaller thermometer encoders, simple routing networks,

and smaller decoders, HBU reduces the implementation cost

drastically compared to other approaches. In this paper, we

use the idea behind the HBU approach and propose a new

architecture to implement CCMs that are widely used in DSP

applications such as FFT and DCT.

B. Fully Unary Implementation

The HBU approach uses the fully unary approach to imple-

ment sub-functions. Fig. 2 shows fully unary cores for imple-

menting an unsigned CCM. Just as in Fig. 1, the horizontal

and vertical box arrays represent the input and the output wire

bundles in the thermometer format, respectively. The lines

connecting the boxes are the wiring network that implements

the function. Fig. 2 implements y = 1
2x. Since the derivative

of the function is 1
2 , a single change in the output of its circuits

1Functions with negative slopes need inverter gates.

94

…
…

… …1 2 3 412
Fig. 2. Unsigned multiplier evaluation in the unary domain (y =

1

2
x).

corresponds to two changes in the input. As illustrated in this

figure, implementing an unsigned CCM only requires a simple

routing network. It should be mentioned that a signed CCM is

a monotonic function that the fully unary approach implements

using only a simple routing network for positive constants and

a simple routing network with inverter gates at the output port

for negative constants (vertical box in Fig. 2).

Even though the fully unary approach can implement CCMs

using a cheap routing network, the required encoder and

decoder units to convert between binary and unary encodings

cause the implementation cost for high-resolution computa-

tions to increase to unacceptable levels, making it not competi-

tive with binary computations. In addition, since a signed CCM

is a constant slope monotonic function that exhibits symmetry

around the middle of the input range, the HBU approach can

work very well on these functions and decompose them into

smaller sub-functions. In Section II-C, we will show that our

new architecture based on the HBU approach uses a smaller

encoder and decoder to implement a CCM, which results in a

lower hardware cost.

C. Fixed-Point Constant Coefficient Multiplier (Our Work)

We modified the HBU method [6] to develop unsigned

and signed CCMs. Since a constant coefficient multiplier is

a constant slope monotonic increasing/decreasing function,

Equation 1 can be simplified as:

f(x) ≈ g(x) = fbase(x) +

⎧⎨
⎩

b1 0 ≤ x < x1
...
bK xk−1 ≤ x < xk

(2)

fbase(x) = f(x) 0 ≤ x < x1 (3)

Where bi (1 ≤ i ≤ k) are the bias values added to the base

function fbase(x). It is important to note that Equation 2 im-

plements the multiplication operation with complete accuracy.

However, to save hardware, we can implement an approximate

version of the function. We use a guiding example to explain

the source of error in our approximation. Fig. 3 shows the

original and the truncated (hardware optimized) version of a

5-bit CCM using Equation 2. In this example, we divided

the input range into two sections (k = 2). According to

Equation 3, fbase(x) is equal to f(x) for 0 ≤ x < 16. For
16 ≤ x < 31, the proposed method produces the output values

g(x) by adding 5, as the bias value, to the base function. By

adding 5 to the base function, the method will output 5 for

x = [16, 17] and 6 for x = [18, 19], while the correct value for
x = [16, 19] is 5. In fact, since our approach might split the

0 16 19 31
0

5
6

9
Original
Reconstructed

Fig. 3. Aliasing issue phenomena.

N-Bit Binary
Register Thermometer

Encoder
Mux-Based

Decoder

Binary domain
Unary domain

Upper (N-M) bits

Binary
Adder

Binary domain

Unary
Core

Lower
M bits

N-Bit Binary
Register

Fig. 4. The overall architecture.

output range of a truncated CCM into non-homogeneous sub-

ranges, the error stems from an aliasing issue when designing

truncated CCMs. In Section IV, we will evaluate the accuracy

of the proposed CCMs for different resolutions by capturing

the value and frequency of occurrence of the error.

We used a synthesis methodology similar to what was pro-

posed in [6] to implement equations 2 and 3. Our synthesizer

uses just one parameter,K, as opposed to the many parameters

in [6]. Parameter K splits the input range into a number of

sub-ranges of length 2K , where 3 ≤ K ≤ N −1, N being the

input resolution. Therefore, the modified synthesizer generates

N − 4 unique designs for each CCM and then finds the

best design with the minimum hardware cost. The modified

synthesizer generates designs based on the proposed HBU

CCM architecture shown in Fig. 4. The proposed architecture

implements a CCM using equations 2 and 3. The architecture

consists of four units: a thermometer encoder, a fully unary

computational unit, a decoder, and a bias adder unit. The

first stage converts binary numbers corresponding to the base

function’s input using a thermometer encoder. The proposed

method uses the lower M bits of the input value to feed

the encoder and uses the remaining N − M upper bits to

add an appropriate bias to the output of the decoder. The

second stage consists of a fully unary core that implements

the base function fbase(x) using the fully unary approach

(Section II-B). The third stage consists of a multiplexer-based

decoder that converts the base function’s output to the binary

format.

D. Truncated Fixed-Point Constant Coefficient Multiplier

We use two guiding examples to show how the modified

synthesizer decomposes and rebuilds a truncated CCM using

95

(a) Unsigned f(x) = 0.6523x (b) Signed f(x) = 0.78125x

Fig. 5. Unsigned and signed multiplier behaviors.

the proposed architecture. In this paper, we use the term

“truncated” to mean multiplying an N -bit input X by a

N -bit input constant, and generating an N -bit output using

floor/round quantization schemes. Figures 5a and 5b show the

behavior of an 8-bit unsigned and signed truncated CCM with

positive coefficients, respectively. The x-axis and y-axis show
the input and the output range. In these particular examples,

the modified synthesizer splits the input range of the unsigned

and the signed CCMs into 8 and 4 equal sub-regions, respec-

tively. Since the lengths of these sub-regions are 32- and 64-

bits in the unary domain, 5- and 6-bit thermometer encoders

and multiplexer-based decoders are needed to implement base

functions corresponding to these two CCMs, respectively.

Figures 6a and 6b show base functions and reconstructed

versions of an unsigned and signed CCM with positive coef-

ficient using equation 2 and 3, respectively, which correspond

to figures 5a and 5b, respectively. The base functions look

jagged because of quantization, i.e., generating anN -bit output

from an N -bit by N -bit multiplication, as opposed to 2N -

bit output. Since the synthesizer splits the input range of

the mentioned CCMs into 8 and 4 different sub-regions, the

proposed architecture uses 7 and 3 different non-zero biases

to reconstruct the original unsigned and signed CCM outputs,

respectively. Therefore, the proposed architecture implements

the unsigned/signed CCM using a 5/6-bit thermometer en-

coder, a simple routing network, and a 5/6-bit decoder. It

should be noted that the proposed approach can implement

CCMs combined with rounding at no extra cost.

E. Non-Truncated Fixed-Point Constant Coefficient Multiplier

In the previous section, we looked at truncated CCMs, e.g.,
both input and output being N bits wide. In this section,

we look at non-truncated constant multiplication, i.e., an

N -bit input number multiplied by an P -bit constant value

resulting in an (N + P)-bit number, hence the term non-

truncated CCM. Since a non-truncated CCM has a wider

output than a truncated CCM, the cost of the decoder in Fig.

4 increases exponentially and becomes the most costly part

of the architecture to implement. To address this increase in

cost, we split the coefficient into two sections and perform

non-truncated multiplication using each section:

C = cN−1...c0 → C1 = cN−1...cM , C0 = cM−1...c0 (4)

(a) Unsigned f(x) = 0.6523x (b) Signed f(x) = 0.78125x

Fig. 6. Multiplier evaluation using the HBU approach.

where 0 < M < N . Therefore, a non-truncated multiplication

can be re-written as follows:

f(x) = C × x = f1(x)× 2M + f0(x)

f1(x) = C1 × x, f0(x) = C0 × x
(5)

Where f1(x) and f0(x) are non-truncated CCMs. Our ex-

perience shows that for 8-bit non-truncated CCMs, the best

value for M is either N
2 − 1, N

2 , or
N
2 + 1. In fact, choosing

a value out of this range for M results in a pair of small

and a large decoders for f1 and f0. The cost overhead due

to the large decoder makes the proposed design unattractive

in terms of area and A × D costs. Splitting the coefficient

not only reduces the decoder complexity, but also reduces the

total cost by sharing the encoder between partial multipliers if

possible. The original input is encoded into the unary format

and fed to fully unary cores to perform partial multiplications.

The output of each core is decoded to the binary format

using smaller decoders compared to the original one. The

outputs of the partial multipliers are summed together based

on their weights to recover the final non-truncated output. It

should be mentioned that the proposed non-truncated CCMs

are completely accurate.

F. The Proposed Cost Optimizer

We propose a framework to further reduce the area cost of

the proposed CCMs. The proposed optimizer tries to build a

coefficient using sub-coefficients with simpler hardware. The

proposed optimizer splits a coefficient ’C’ into a set of sub-

coefficients C1, . . . , Cn with the same resolution as ’C’ such

that C =
∑n

i=1 αiCi, where αi ∈ {-1, 0, 1}, and the total

hardware cost of
∑n

i=1 αiCiX is less than the hardware cost

of CX .

To ensure that the cost is reduced, the number of sub-

coefficients must be limited; otherwise, the cost of adders will

become an overhead. Based on our experience, the maximum

number of sub-coefficients should be three. Moreover, another

way to reduce the total cost of the set is to share the

96

encoders among the sub-coefficient CCMs. This can be done

by selecting a set where the sub-coefficients have encoders of

the same size. There are many sets of sub-coefficients for each

coefficient. However, only those of them that are very likely

to yield lower cost need to be considered. To find optimal

or sub-optimal sets, we develop a framework that uses a few

constraints to shrink the number of sets.

The proposed framework computes an estimate of the total

cost for each set of sub-coefficients by summing the individual

costs of each sub-coefficient. It then discards the sets of which

the total cost is greater than 70% of the cost of the original

CCM, regardless of other constraints. To further reduce the

number of candidates, eight groups of sets are sorted based

on their priority. The optimizer assigns a factor to each group

and removes sets from each group whose total cost exceeds the

minimum total cost between all possible candidates weighted

by the group’s factor. The sets with first priority contain two

equal sub-coefficients (e.g. 10X = 5X + 5X). The sets with

second priority contain two non-equal sub-coefficients with

the same encoder size. For instance, if the encoder size of

26X and 42X are equal, then these two coefficients can be

a candidate to implement 68X (68X = 26X + 42X). The

third priority is given to sets containing all three equal sub-

coefficients. The sets with fourth priority contain three non-

equal sub-coefficients with the same encoder size. In these

cases, just a single encoder is needed for all sub-coefficient

multipliers. The fifth priority is given to sets containing two

non-equal sub-coefficients with different encoder sizes (e.g.

40X = 32X + 8X). The sets with sixth priority have three

sub-coefficients of which two out of three sub-coefficients

are exactly the same (e.g. 22X = 10X + 10X + 2X),

regardless of the encoder size. The seventh priority is given

to sets containing all three sub-coefficients of which two

out of three sub-coefficients have the same encoder size,

regardless of sub-coefficient values. The last priority is given

to sets containing all remaining three sub-coefficients. Then,

the framework sorts all remaining sets based on their total cost

and chooses the top 20 sets for each coefficient. Finally, the

framework generates Verilog codes to implement the candidate

sets and then synthesizes them using the Xilinx Vivado 2018.2

default design flow. For optimized truncated CCMs, since all

sub-coefficients have at most 1 bit inaccuracy, the optimized

designs can have at most 2 bit inaccuracy. In Section IV, we

evaluate the accuracy of the best design for each CCM.

III. HIGH-RESOLUTION CONSTANT COEFFICIENT

MULTIPLIER

In this section, we propose low-cost, approximate, high-
resolution CCMs for applications that can tolerate approxima-

tion. We use truncated and non-truncated multipliers proposed

in sections II-D and II-E as building blocks to design such

multipliers. Before we present our proposed approximate

architecture, we should mention that the methods of sections

II-D and II-E are not scalable with respect to the width of

variable input X: no matter how we tune synthesis parameters,

hardware cost of the HBU CCMs increases beyond that of

Xilinx LogiCORE IP CCMs, and table-based KCM CCMs. If

the input is broken into many small sections to bring down the

cost of the encoder/decoder blocks, the cost of the multiplexer

and the bank of bias values increases prohibitively. As a result,

we are forced to break the input variable, as well as the

constant into smaller chunks.
We take advantage of the binary format representation to

split the multiplicand and the multiplier into three sections

to reduce the required encoder and decoder length. We use

the pencil-and-paper multiplication method to break a 16-bit

CCM into a non-truncated (16-bit output) and two truncated

CCMs (8-bit output). Equation 6 illustrates the approach used

to implement 16-bit CCMs.

f(x) = C × x = f2(x) + f1(x) + f0(x)

f0(xL) = cL × xH , f1(xL) = cH × xL, f2(xH) = cH × xH

C = c15...c0 = cH × 2M + cL
(6)

where × represents truncated and × represents non-truncated

multiplication. It follows that for N=8, the output of f2(xH)
is a non-truncated 16-bit output, while the outputs obtained

from f0(xL) and f1(xH) are truncated 8-bit outputs. Note that

we discard the term cL × xL, and use the truncated rounded

multiplications.

IV. ACCURACY ANALYSIS

In this section, we evaluate the accuracy of all proposed

unsigned CCMs using maximum absolute error (MAAE) and

mean absolute error (MEAE) metrics, comparing the proposed

CCMs with conventional truncated round CCMs 2. Fig. 7

shows the error analysis of the proposed 8- and 10-bit CCMs.

Moreover, this figure compares the error of the proposed

CCMs before applying the proposed cost optimizer (HBU-

w/oOp) and the error of the optimal HBU CCMs (HBU-wOp).
As seen in Fig. 7, the maximum absolute error of HBU-

w/oOp CCMs is one bit, while the mean absolute error of each

CCM is less than 0.5
2N

which means each CCM has 0 bit error

for most inputs and at most one bit error for the remaining

inputs. For instance, MEAE of 0.3 for a particular constant

means that the CCM has one bit error for 30% of the input

X values, and 0 bit error for the rest. However, the MAAE of

the HBU-wOp CCMs can be 2
2N

or 3
2N

which means that

those CCMs can have a maximum of 2-bit error. In fact,

when we apply the cost optimizer to fixed point CCMs, the

resulting designs can have up to 2 bits of inaccuracy for some

inputs since all original sub-coefficients have up to 1 bit of

inaccuracy and the errors accumulate. Their MEAE is closer to
1
2N

which means that the probability of having a one bit error

is higher than the probability of having a one bit error using

HBU-w/oOp CCMs, especially for 10-bit truncated CCMs. It

should be mentioned that there is a trade-off between cost and

accuracy. To have less than one bit inaccuracy on average,

one can use another metric instead of minimum area cost to

pick sub-optimal designs between the HBU-w/oOp and HBU-

wOp CCMs. Therefore, our approximate CCMs can be used

2We have used quantization scheme to generate truncated multipliers output

97

50 100 150 200 2500

1

2

3
M

A
A

E
(

2-8
) HBU-w/oOp HBU-wOp

50 100 150 200 2500
0.2
0.4
0.6
0.8

M
EA

E
(

2-8
) HBU-w/oOp HBU-wOp

Coefficient
(a) 8-bit truncated CCMs

100 200 300 400 500 600 700 800 900 10000

1

2

3

M
A

A
E

(
2-1

0)

HBU-w/oOp HBU-wOp

100 200 300 400 500 600 700 800 900 10000

0.5

1

M
EA

E
(

2-1
0)

HBU-w/oOp HBU-wOp

Coefficient
(b) 10-bit truncated CCMs

Fig. 7. Error analysis of the proposed truncated CCMs.

to implement applications that can tolerate slight inaccuracies,

such as image processing applications or neural networks.

Also, it should be mentioned that non-truncated HBU-w/oOp

and HBU-wOp CCMs are completely accurate (Fig. 7 showed

results for truncated architectures).

V. HARDWARE COST EVALUATION

We developed Verilog hardware descriptions to implement

the proposed unsigned CCMs for different resolutions. We

evaluate all designs on Kintex7XC7K70TFBG676-2 FPGAs

and synthesized them using the Xilinx Vivado 2018.2 default

design flow. The synthesis clock speed is 250 MHz. We have

extracted the implementation costs in terms of area, as the

number of LUTs, and A × D for each coefficient using the

proposed architecture, Xilinx LogiCORE IP CCMs, and table-

based KCM approach [3], [5]. We have reported hardware

costs of the optimized HBU CCMs. To implement each CCM

using table-based KCM, we used the decomposition technique

mentioned in [5] to split the input into 4-, 5-, and 6-bit chunks

as well as the decomposition technique proposed by [3] which

results in four different designs. Then, we chose the best

design among all designs for each CCM.

Figures 8a, 8b, and 8c show the area and A × D costs

of each coefficient for 8-bit truncated, 10-bit truncated, and

8-bit non-truncated CCMs, respectively. As we can see, the

proposed CCMs have lower area and A×D costs compared to

other approaches for most cases. For further evaluation of the

proposed CCMs as well as the proposed cost optimizer, Table I

50 100 150 200 250
0

10

20

30

A
re

a
(#

LU
T) KCM IP Core HBU

50 100 150 200 250
0

50

100

A
re

a
x

D
el

ay KCM IP Core HBU

Coefficient
(a) 8-bit truncated CCMs

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

A
re

a
(#

LU
T) KCM IP Core HBU

100 200 300 400 500 600 700 800 900 1000
0

100

200

A
re

a
x

D
el

ay KCM IP Core HBU

Coefficient
(b) 10-bit truncated CCMs

50 100 150 200 250
0

10

20

A
re

a
(#

LU
T) KCM IP Core HBU

50 100 150 200 250
0

20

40

60

80

A
re

a
x

D
el

ay KCM IP Core HBU

Coefficient
(c) 8-bit non-truncated CCMs

Fig. 8. Hardware cost comparison of the proposed CCMs.

compares the area cost statistics of the proposed CCMs against

the cost of Xilinx LogiCORE IP CCMs before and after

applying the proposed cost optimizer for different resolutions.

This table shows the number of cases that the proposed

approach has higher, equal, and lower area cost compared to

Xilinx LogiCORE IP CCMs. Also, this table reports the total

hardware cost of all coefficients for each resolution using the

proposed and Xilinx LogiCORE IP CCMs. In this table, the

’Ratio’ column is the ratio of the total cost of the proposed

CCMs to the total cost of Xilinx LogiCORE IP CCMs. Table I

shows that the proposed method can improve the area cost of

7- to 9-bit truncated CCMs by 53% to 25% as well the area

98

TABLE I
HARDWARE COST COMPARISON STATISTICS OF THE PROPOSED CCMS BEFORE AND AFTER APPLYING OUR PROPOSED OPTIMIZER.

N
Before applying our optimizer After applying our optimizer

IP<HBU IP=HBU IP>HBU
Tot.Cost
IP(LUT)

Tot.Cost
HBU(LUT)

Ratio IP<HBU IP=HBU IP>HBU
Tot.Cost

HBU(LUT)
Ratio

7, Truncated 1 1 125 1847 877 0.475 1 1 125 758 0.410
8, Truncated 0 4 251 4950 2529 0.511 0 4 251 2211 0.446
9, Truncated 30 35 446 11794 8882 0.753 2 4 505 6172 0.523
10, Truncated 806 36 181 27802 33034 1.188 11 12 1000 14718 0.529
11, Truncated 1944 6 97 50421 119398 2.368 580 72 1395 41495 0.823

8, non-truncated 0 10 245 5462 3911 0.716 0 10 245 3738 0.684

TABLE II
JPEG ENCODER ACCURACY RESULTS FOR 8-BIT RESOLUTION.

Design approach PSNR (dB) SSIM
Floating-point 39.95 0.9634
Binary Fixed-point 39.86 0.9613
The proposed CCMs-Original 39.76 0.9603
The proposed CCMs-Optimized 39.44 0.9581

cost of 8-bit non-truncated CCMs by 29% without applying

the proposed optimizer. As we can see, it cannot beat Xilinx

LogiCORE IP for high-resolution CCMs, such as 10- and 11-

bit truncated CCMs. However, after applying our optimizer,

the proposed method can beat Xilinx LogiCORE IP-based

CCMs and improve the area cost of the reported resolutions

from 59% to 18% on average. For example, if we add up

the area cost of all LogiCORE IP-based and optimized HBU-

based of 8-bit truncated CCMs, the optimized HBU reduces

the area cost by 54%. Another technique to implement high-

resolution CCMs is the coefficient-splitting technique, and will

be discussed in Section III. The implementation cost results of

16-bit truncated CCMs, which are used to implement parallel

fast Fourier transform (FFT) architectures, will be discussed

in Section VI-B.

VI. CASE STUDIES

In this section, we evaluate the proposed CCMs on two com-

mon digital signal processing (DSP) applications: 2-D DCT

and Radix-2 Decimation in Time-FFT (DIT-FFT). We have

implemented these applications using Xilinx LogiCORE IP

CCMs, referred to as the binary architecture, and the proposed

optimized CCMs, referred to as the HBU architecture. All

designs have been evaluated on Kintex7XC7K70TFBG676-
2 FPGAs and placed and routed them using Xilinx Vivado

2018.2 with default design flow. The synthesis clock speed

is 250 MHz. However, we have reduced the clock frequency

to 100 MHz in order to place and route 128-point Radix-2

DIT-FFT.

A. 2-D DCT

We introduce a new fully parallel HBU 2-D DCT engine

to implement a JPEG encoder, which results in remarkable

improvements in hardware cost and throughput compared to

Xilinx LogiCORE IP CCMs-based engine. A major portion of

a JPEG encoder’s computational complexity is due to the DCT

unit. We have evaluated the performance of a JPEG encoder

in terms of Peak Signal to Noise Ratio (PSNR) and structural

similarity (SSIM) using floating- and fixed-point operations in

MATLAB. We realized that using floor truncation in signed

multiplication results in a significant drop in accuracy, while

using rounding in signed multiplication or flooring in sign-

magnitude multiplication3 keeps the accuracy the same as

that of the non-truncated implementation. Therefore, we used

sign-magnitude multiplication to evaluate and implement the

2-D DCT algorithm. We have evaluated the performance of

the JPEG encoder using the proposed CCMs before and

after applying the proposed cost optimizer, the original and

the optimized CCMs, respectively. For the accuracy test and

analysis, we used the quantization matrix corresponding to

the quality factor of 90%. We also used Lena512 image

as a test case. Table II shows the accuracy analysis of a

JPEG encoder. It shows that the drop in accuracy of the 8-

bit fixed-point implementation compared to the floating-point

implementation is negligible. Moreover, the table shows that

the drop in accuracy using the proposed original CCMs and the

proposed optimized CCMs is around 0.1-0.3-dB compared to

8-bit accurate fixed-point Xilinx LogiCORE IP CCMs, which

is negligible.

We have developed the HDL code to implement a 2D-

DCT architecture using Xilinx LogiCORE IP CCMs and the

proposed optimized CCMs for 8-bit resolution. The proposed

kernel uses 64 pipelined-parallel sub-kernels to produce all

output elements in parallel. Each kernel has 64 CCMs and a

fully pipelined adder tree. The latency of an IP core CCM-

based and the proposed CCM-based sub-kernel are 10 and 8

clock cycles, respectively. We have implemented the architec-

tures using IP core CCMs (IP CCM) and the proposed CCMs

(HBU CCM) with cost optimization. Table IV shows hardware

implementation results. Columns 2-4 show the number of

LUTs, the number of FFs and the critical path delay, respec-

tively. Columns 5-7 show the throughput in Mega Samples per

Seconds, power and energy per sample, respectively. The last

column shows the total A × D value. The table shows that

the HBU architecture results in 34% and 37% improvement

in terms of area and A × D, respectively. Moreover, our

architecture not only reduces the energy consumption per

sample by 36%, but also improves the throughput by 4%.

The 8K and 4K ultra HD images have around 33.2M and

8.2M pixels, respectively. The proposed kernel can be used

in real 8K and 4K video processing, because it can process

783 and 3165 frames per second of 8K and 4K UHD streams,

respectively. These numbers can be improved by pipelining

3We use the floor operator to truncate the output magnitude.

99

TABLE III
FFT HARDWARE IMPLEMENTATION RESULTS. ‘T’ IS THE (GIGA SAMPLES PER SECOND) THROUGHPUT, ‘P’ IS POWER, AND ‘E/S’ IS ENERGY PER

SAMPLE CONSUMPTION. WE DO NOT HAVE DATA ON THE POWER CONSUMPTION OF 256-POINT DESIGN AS VIVADO CRASHES ON OUR COMPUTERS.

FFT Size
Binary approach (Xilinx LogiCORE IP CCM-based) HBU approach Ratio

LUT D(ns) T(GS) P(W) E/S(pJ) A×D SNR(dB) LUT D(ns) T(GS) P(W) E/S(pJ) A×D SNR(dB) T Area A×D E/S

8-Point 4.07K 2.76 2.89 0.19 67 1.12e-4 Inf 3.94K 2.93 2.73 0.17 62.6 1.15e-4 Inf 0.94 0.96 1.0 0.93

16-Point 12.8K 2.88 5.57 0.50 90 3.68e-4 79.9 12.0K 3.33 4.80 0.43 90.2 4.03e-4 77.5 0.86 0.94 1.0 1.0

32-Point 36.1K 3.11 10.3 1.29 125 11.2e-4 76.3 35.0K 3.43 9.32 1.17 125 12.0e-4 73.7 0.90 0.97 1.0 1.0

64-Point 90.0K 3.42 18.7 2.87 154 3.90e-4 72.8 88.2K 3.49 18.3 2.53 138 30.8e-4 70.3 0.98 0.97 0.99 0.89

128-Point 224K 8.68 14.7 7.19 487 194e-4 69.6 219K 4.92 26.0 5.85 225 108e-4 67.1 1.76 0.98 0.55 0.46

256-Point 493K 8.96 25.6 − − 441e-4 66.4 483K 6.31 40.6 − − 304e-4 64.1 1.58 0.97 0.69 −

TABLE IV
2-D DCT HARDWARE IMPLEMENTATION RESULTS USING XILINX

LOGICORE IP CCMS (IP CCM-BASED) AND THE PROPOSED CCMS

(HBU CCM-BASED).

Design
method

LUT FF D(ns) T(MS) P(W) E/S(pJ) A×D
IP CCM 109K 93K 2.57 389 3.63 145 280e-6

HBU CCM 72K 57K 2.46 406 2.43 93 177e-6

Ratio 0.66 0.61 0.95 1.04 0.67 0.64 0.63

TABLE V
HARDWARE COST COMPARISON STATISTICS OF THE PROPOSED 16-BIT

TRUNCATED CCMS.

Bin<HBU Bin=HBU Bin>HBU
Tot.Cost
Bin(LUT)

Tot.Cost
HBU(LUT)

Ratio

5 2 248 16962 12356 0.728

and retiming techniques.

B. Fast Fourier Transform

We introduce a pipelined-parallel Radix-2 DIT-fast Fourier

transform (FFT) architecture using the HBU CCMs, which

results in a processing power of 321 Giga samples per second.

The parallel FFT can be used to implement high order filters

for many DSP applications such as compensation of chromatic

dispersion inherent in optical fibers, object detection over

large bandwidths using radar, cellular communication, and so

on. As we mentioned in Section III, we used the proposed

truncated and non-truncated 8-bit CCMs to implement 16-bit

truncated CCMs based on Equation 6. We only implemented

the required CCMs to implement 8- to 128-point Radix-2 16-

bit fixed-point DIT-FFT. Table V shows the hardware cost

comparison statistics of the proposed 16-bit truncated CCMs.

The proposed optimized 16-bit truncated CCMs can beat the

16-bit truncated fixed-point Xilinx LogiCORE IP CCMs in

97.6% of the coefficients. The proposed approach can decrease

the area cost of the required CCMs by 54.65%. To evaluate

the proposed multipliers, we have implemented different sizes

of 16-bit fixed-point DIT-FFT with the Xilinx LogiCORE IP

and the proposed optimized CCMs. Each stage has a latency

of 4 clock cycles in the binary and the HBU architectures. We

have reported the hardware cost in Table III. As we can see,

the proposed architecture improves power and the energy per

sample by 16% and 14% on average for 8- to 128-point Radix-

2 DIT-FFT. These number can be improved by using different

constraints for place and route steps. We have evaluated the

accuracy of fixed-point FFT engines against floating-point

engines using signal-to-noise ratio (SNR). Table III shows that

TABLE VI
ROUTABILITY RESOURCE UTILIZATION TEST RESULTS.

Design FPGA
LUT(K) Resource

UtilizationCapacity Used

3× HBU xc7vx415tffv1927-1 260 223 85.2%

2× LogiCORE xc7vx415tffv1927-1 260 unroutable

2× LogiCORE xc7k480tiffv901-2L 298 270 90.5%

the SNR of our designs drops around 2.5dB (0.415 in terms

of bits) based on the level of quantization error induced by

our proposed truncated CCMs.

VII. ROUTABILITY RESOURCE UTILIZATION TEST

Given that our method uses routing resources to perform

“logic”, one might be concerned that even though it uses

fewer LUTs, it might use more routing resources and hence

be unroutable when chip utilization is high. We designed an

experiment to test this hypothesis. As mentioned in Section

VI-A, a fully parallel 8×8 HBU CCM-based 2D-DCT engine

needs 30% fewer LUTs than LogiCORE IP CCM-based 2D-

DCT engine. As a result, in theory one should be able to use a

small FPGA that can fit two fully-routed copies of LogiCORE

IP DCT blocks with high utilization, and use the same FPGA

to fit three copies of HBU DCT engines. In our experiments,

the opposite of what we expected happened: we could fit three

copies of the HBU DCT engine on an FPGA with 85.2% logic

resource utilization, but could not successfully place and route

two LogiCORE IP DCT engines on the same FPGA. We then

used larger and larger FPGAs to be able to fit two or even

three LogiCORE IP DCT engines. Table VI shows the post

place and route results. This shows that our method has less
routability issues compared to binary implementations.

VIII. CONCLUSIONS

We proposed a novel HBU approximate CCM with lower

costs compared to Xilinx LogiCORE IP and table-based KCM

CCMs on average. We evaluated the proposed multipliers

on two common DSP algorithms: 8-bit fixed-point 2-D DCT

and 16-bit fixed-point FFT. The proposed architecture solidly

outperforms the binary architecture implemented using Xilinx

LogiCORE IP CCMs on average in terms of {area × delay,

throughput, power, and energy per sample consumption}, by
{37%, 4%, 33%, and 36%} for the 2-D DCT algorithm

and by {6%, 9%, 16%, and 14%} for the FFT algorithm.

Moreover, we showed that our method has less routability

issues compared to binary implementations at least in DCT.

100

REFERENCES

[1] O. Gustafsson et al., “Simplified design of constant coefficient mul-
tipliers”, Circuits, Systems and Signal Processing, vol. 25, no. 2,
pp. 225–251, Apr. 2006.

[2] K. Chapman, “Fast integer multipliers fit in fpgas”, in EDN magazine,
1993, p. 80.

[3] E. George Walters, “Reduced-area constant-coefficient and multiple-
constant multipliers for xilinx fpgas with 6-input luts”, English (US),
Electronics, vol. 6, no. 4, Dec. 2017.

[4] V. Dimitrov, L. Imbert, and A. Zakaluzny, “Multiplication by a constant
is sublinear”, in 18th IEEE Symposium on Computer Arithmetic
(ARITH ’07), Jun. 2007, pp. 261–268.

[5] F. de Dinechin et al., “Table-based versus shift-and-add constant
multipliers for fpgas”, in ARITH 2019 - 26th IEEE Symposium on
Computer Arithmetic, Kyoto, Japan: IEEE, 2019, pp. 1–8.

[6] S. R. Faraji and K. Bazargan, “Hybrid Binary-Unary Hardware Ac-
celerators”, in 2019 24th Asia and South Pacific Design Automation
Conference (ASP-DAC), Jan. 2019.

[7] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. PP, no. 99, pp. 1–1, 2017.

[8] A. Ardakani, F. Leduc-Primeau, and W. J. Gross, “Hardware imple-
mentation of fir/iir digital filters using integral stochastic computation”,
in 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Mar. 2016, pp. 6540–6544.

[9] K. Han et al., “Stochastic bit-wise iterative decoding of polar codes”,
IEEE Transactions on Signal Processing, vol. 67, no. 5, pp. 1138–1151,
Mar. 2019.

[10] H. Sim and J. Lee, “A New Stochastic Computing Multiplier with
Application to Deep Convolutional Neural Networks”, in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), Jun. 2017.

[11] V. T. Lee et al., “Architecture considerations for stochastic comput-
ing accelerators”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 11, pp. 2277–2289, Nov.
2018.

[12] M. H. Najafi et al., “Accelerating deterministic bit-stream computing
with resolution splitting”, in 20th International Symposium on Quality
Electronic Design (ISQED), Mar. 2019, pp. 157–162.

[13] S. R. Faraji et al., “Energy-Efficient Convolutional Neural Networks
with Deterministic Bit-Stream Processing”, in Design, Automation, and
Test in Europe (DATE), 2019, Mar. 2019.

[14] S. Liu and J. Han, “Energy efficient stochastic computing with sobol
sequences”, in Design, Automation Test in Europe Conference Exhibi-
tion (DATE), 2017, Mar. 2017, pp. 650–653.

[15] M. H. Najafi, D. J. Lilja, and M. Riedel, “Deterministic Methods
for Stochastic Computing Using Low-discrepancy Sequences”, in Pro-
ceedings of the International Conference on Computer-Aided Design,
ser. ICCAD ’18, San Diego, California: ACM, 2018, 51:1–51:8.

[16] P. Ting and J. P. Hayes, “Maxflow: Minimizing latency in hybrid
stochastic-binary systems”, in Proceedings of the 2018 on Great Lakes
Symposium on VLSI, ser. GLSVLSI ’18, Chicago, IL, USA: ACM,
2018, pp. 21–26.

[17] S. Mohajer, Z. Wang, and K. Bazargan, “Routing magic: Performing
computations using routing networks and voting logic on unary en-
coded data”, in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’18,
Monterey, CALIFORNIA, USA: ACM, 2018, pp. 77–86.

101

