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Abstract—FPGAs are becoming significant for implementing
low-latency convolutional neural networks, because of perfor-
mance demands and power constraints. Conventional implemen-
tations of convolutional layers are usually direct convolution,
involving nested loops over channels, feature maps, and filters.
Explicit general matrix multiplications (GEMMs) cost extra
memory space, and the limited on-chip RAMs prevent an efficient
GEMM-based implementation. In this paper, we evaluate a low-
memory method of GEMMs on FPGAs based systolic arrays. We
design a novel accelerator to save the bandwidth and increase
the parallelism. We evaluate our design on MobileNet V1 and
Inception V4. Our implementation achieves a throughput of
around 3.5 TOP/s for both models. We also reduce the memory
usage by 21% compared to explicit GEMM implementation for
MobileNet V1 and 44% for Inception V4.

I. INTRODUCTION

FPGAs are playing more and more significant roles in

convolutional neural network (CNN) inference because of

their high performance and energy efficiency. Popular CNNs

such as ResNet [1], Inception [2], and VGG [3] consist

of many convolutional layers. Convolutional layers involve

massive floating-point multiply-accumulate operations (MAC)

and require numerous parameters to infer. Therefore, CNN

inference is both memory- and compute-intensive. The latest

FPGAs incorporate many hardware resources, including DSPs,

on-chip BRAMs, and enormous logic cells, to provide effective

computational power. There are many works using FPGAs to

implement low-latency and high-throughput CNN inference.

There are various implementations for convolutional layers.

The first kind of implementation is element-wise direct convo-

lution, used in many FPGA accelerators [4], [5], [6], [7], [8],

[9], [10]. Optimization for direct convolution is usually based

on polyhedral model [11] and tiles the feature maps/weights to

utilize the on-chip memory. However, the nested loops of direct

convolution are controlled by too many counters, including the

number of input/output channels, the filter size, etc. The cost of

exploring the design space is great, and it is difficult to optimize

the performance. The second kind of implementation is general

matrix multiplications (GEMMs), widely used on the platforms

like CPUs, GPUs, and ASICs. GEMMs are usually based

on computational libraries such as the Basic Linear Algebra

Subprograms (BLAS) [12] or NVIDIA cuBLAS [13]. The third

kind of implementation uses fast algorithms for convolution or

matrix multiplication. There are Fast Fourier Transform-based

algorithm [14] and Winograd algorithm [15]. These algorithms

can outperform conventional BLAS libraries in some cases.

Winograd algorithm is particularly suitable for convolutional

layers with 3 × 3 filter size (very common in ResNet [1]).

Moreover, recent studies [16], [17] can replace a large-filter

convolutional layer with several small-filter convolutional layers.

For example, Inception model [16] decomposes the k × k
convolution into 1× k and k × 1 convolutions.

Computing convolutional layers via GEMMs works effi-

ciently on CPUs [18], GPUs [13], and ASICs [19]. However,

GEMMs have one fatal drawback when implemented on

FPGAs. GEMMs transform the convolutional layers into matrix

multiplications through reshaping and packing, such as image to

column (“im2col”) [20]. The additional reshaping and packing

require extra memory space, addressing operation, and hence

incur a non-trivial time penalty. The on-chip memory is very

limited on FPGAs, and the off-chip communication is usually

the bottleneck of FPGA designs. Therefore, data redundancy

makes GEMMs on FPGAs inefficient. On other platforms,

data redundancy is not a serious problem. For von Neumann

architecture (typically CPUs), the parallelism (the data width

processed per instruction) is the bottleneck. ASICs utilize

plentiful silicon area for the on-chip buffers to satisfy the

bandwidth and capacity requirement (e.g. unified buffer in

TPU [19] occupies one-third of the total area). Both the

latest FPGAs (like Xilinx U50/U280 cards and Intel Stratix

10 MX FPGAs) and TPU V3 use faster memory modules

like HBM2 [21]. However, HBM2 is far more expensive than

conventional DDR memory.

In this paper, we evaluate a low-memory GEMM method for

CNN inference on FPGAs to overcome the data redundancy.

By rewriting GEMM calls using different data layouts, we

can explore the execution order and the memory requirements.

We evaluate an algorithm that requires O(KW ) additional

space [22]. This makes GEMMs feasible on FPGAs and

consumes fewer BRAMs. We also apply FPGA-specific op-

timization on it to further increase the data reuse rate and

parallelism. We test our design on MobileNet V1 and Inception

V4. We reduce 21% on-chip memory usage for MobileNet V1

and 44% for Inception V4 while achieving a throughput of 3.5

TOP/s.
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II. BACKGROUND

The convolutional layers dominate both the computation

and storage of the network execution [20] in a CNN model.

Therefore, the focus of designing a CNN inference accelerator

falls on the architecture of convolutions. The representation of

direct convolution contains nested loops with 6 upper bounds

(M,C,H,W,Kh,Kw). M and C are the numbers of output

and input channels. H and W are the sizes of the input feature

map. Kh and Kw are the filter sizes of the convolution. In most

cases, Kh is equal to Kw and we denote them as one variable

K = Kh = Kw. When Kh does not equal Kw, we denote

K = max{Kh,Kw}. Optimization for direct convolution

usually involves tiling, as shown in Listing 1 (S is the stride

of convolution). Listing 1 is a two-level loop tiling dataflow by

partitioning (H,W,M,C) and fully unrolling the inner kernel.

Direct convolutions use O(CHW ) space for the input feature

map, O(MCKhKw) for the weights, and O(MHW ) for the

output feature map, without extra memory space.

for(m=0;m<M;m+=Tm){ //output feature
for(c=0;c<C;c+=Tc){ //input feature
for(h=0;h<H;h+=Th){ //feature row
for(w=0;w<W;w+=Tw){ //feature column
for(th=h;th<min(h+Th,H);++th){
for(tw=w;tc<min(w+Tw,W);++tw){
for(tm=m;tm<min(m+Tm,M);++tm){
for(tc=c;tc<min(c+Tc,C);++tc){
//unrolling the inner loop body
for(i=0;i<Kh;i++){ //filter size
for(j=0;j<Kw;j++){ //filter size
out[tm][th][tw]+=w[tm][tc][i][j]

*in[tc][S*th+i][S*tw+j]
}}}}}}}}}}

Listing 1. Direct convolution with tiling.

Fig. 1. The “im2col”+GEMM (explicit GEMM) method.

“im2col”+GEMM [20] (explicit GEMM) is one of the

common solutions used in CPUs and GPUs. In Fig. 1, we

demonstrate how “im2col” works. We have red and yellow

input feature maps and two filter kernels for them. The number

of input channels M is 2. The number of output channels

C is 1. The shape of feature maps (H,W ) is (3, 3). Kernel

size Kh and Kw are both 2. We reallocate the MACs as

dotted circles and solid arrows indicate. In the end, we have

a 4× 8 matrix multiplying another 8× 1 matrix. We usually

denote this as a (M ′ = 4, N ′ = 1,K ′ = 8) or (4,1,8) GEMM.

“im2col” requires O(KhKwCHW ) extra memory space for

the transformed feature map matrix. If Kh = Kw = 1, explicit

GEMM does not suffer from the data replication.

Explicit GEMM requires too much memory (KhKw-level),

and there exist other alternatives. For example, implicit GEMM

used by NVIDIA Tensor Core [23] computes directly on the

convolution input feature maps and converts the operations

as matrix multiplications on the fly. Implicit GEMM is still a

variant of direct convolution and is not as effective as explicit

GEMMs. We will evaluate the effectiveness of “kernel to row”

based GEMM on FPGAs in this paper.

III. METHODOLOGY

A. Low-Memory GEMM Algorithm

Toeplitz-based “im2col” method transforms a 3D input tensor

into a 2D matrix. The kernel to row (“kn2row”) method is a

4D extension of Toeplitz-based transformation. The ”kn2row”

method is based on the decomposition of convolutions and

reorder the data layout. A Kh × Kw convolution can be

computed using KhKw 1× 1 convolutions. We shift and add

the intermediate outputs to achieve the final results.
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Fig. 2. The “kn2row” method.

As we have discussed in Section II, 1×1 convolution can be

done without extra memory workspace. Kh ×Kw convolution

can be expressed as the sum of Kh × Kw separate 1 × 1
convolutions. Each 1 × 1 convolution will produce a matrix

with dimension M ×HW , but all these matrices correspond

to different kernels value back to Kh ×Kw kernel. We can

add these matrices by offsetting every pixel in every channel

vertically and/or horizontally. For example, if Kh = Kw = 3
(3 × 3 sized filter), the central point of the kernel outputs a

perfectly aligned matrix after the multiplication. This perfectly

aligned matrix does not need to be shifted. For the upper-right

value of the 3× 3 kernel, the output matrix must be offset up

and right by one pixel. After shifting, the intermediate matrices

can be out of final bounds. These out-of-bounds values should

be discarded. In Fig. 2, we give an illustration of “kn2row”.

The extra memory space is the intermediate matrices marked

by the green color. Hence, “kn2row” method requires an extra

workspace of O(KwKhMHW ).
Anderson et al. proposed the accumulating “kn2row” [22], a

variant with only O(KW ) extra memory consumption. In the

conventional “kn2row”, the intermediate matrices are generated

by Kh ×Kw GEMM operations. If these GEMM operations

work in an accumulating way (O = A × B + O), KhKw

intermediate matrices can be reduced to two matrices: one

accumulating buffer and one intermediate buffer. We illustrate

the accumulating “kn2row” in Fig. 3. The accumulating

algorithm regroups the weight matrix as KhKw smaller M×C
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Fig. 3. The accumulating “kn2row” method.

sized matrices. In Fig. 3, these matrices are labeled from A to

I (A,B,C,. . . ,I) according to their original positions in the filter

kernel. The accumulating “kn2row” algorithm uses an extra

buffer to accumulate the KhKw M ×C matrices and requires

an extra workspace of O(MHW ). However, the extra memory

space can be further reduced. Since the offsets of intermediate

matrix fall in a pre-determined range, the starting address of

each matrix generated by (A,B,C,. . . ,I) kernels can be pre-

calculated. In Fig. 3, we mark the starting addresses on the

rightmost matrix by their labels. Therefore, we need to reserve

a buffer of size (M + 2δ) × (HW ), where δ = � K
2H �. This

reserved space is allocated just enough for the padding (after

shifting). Hence, the final version of accumulating “kn2row”

algorithm uses O(δHW ) = O(KW ) extra space.

B. FPGA-Specifc Optimization

Fig. 4. The overall accelerator design.

For our FPGA-based implementation, we use a homogeneous

structure, as shown in Fig. 4. We leverage systolic arrays [24],

[9] to implement GEMM operations. Input matrices of systolic

arrays are the representations of feature maps and weights.

Systolic arrays are specialized for parallel computing with a

deeply pipelined network of processing elements (PEs). For a

processed tile, on-chip buffers can fully store the weights and

the input/output feature maps. On the right side of Fig. 4, we

demonstrate the accelerator perspective. An accelerator consists

of several systolic arrays (SAs) and each SA has its own buffer

to fulfill the streams of PEs. We use a post-processing unit to

perform auxiliary operations such as relu and pooling. In other

words, we fuse these layers into convolutions.

We use a small fixed size for all the SAs, e.g. 8 × 16 or

32× 32, to break down the GEMMs. DSPs and BRAMs are

distributed in columns throughout the physical layout. A kernel

with limited size can be bounded in a small area of the physical

layout. This benefits the synthesis of the design and may result

in a higher frequency [25]. We replicate the small SAs to

achieve the same performance of a large SA.
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Fig. 5. Parallel SAs and three-level cache.

We propose a method to achieve both high parallelism and

data reuse rate. GEMM operation (M ′, N ′,K ′) multiplies a

(M ′,K ′) sized matrix with a (K ′, N ′) sized matrix. We define

that each SA deals with (Mb, Nb,Kb) and we partition the

input tensors into smaller tiles. (Mb, Nb) means that the systolic

arrays will handle Mb rows of A and Nb columns of B. In

Fig. 5, the smallest unit of two matrices is represented as a

(Mb, Nb,Kb) tile (the red). In addition, each PE of the systolic

arrays has an accumulator. This accumulator performs a vector

reduction add of length Kb, which means the accumulator takes

Kb elements at a time. Hence, each PE takes (Mb +Nb) ·Kb

elements from A and B as inputs each time. In order to utilize

DSPs and BRAMs, we duplicate the SAs in three directions:

M ′, N ′, and K ′. The number of copies along three directions

are (pm, pn, pk), shown as the light brown tiles in Fig. 5.

Therefore, there are p = pmpnpk parallel SAs in total.

However, simple duplication uses few BRAMs, and data

reuse rate will not satisfy the off-chip bandwidth requirements,

because the DSP usage reaches the limit first. We propose a

three-level cache to solve this issue. We introduce new param-

eters (Kr, Nr,Mr) and expand the cache by Kr ×Nr ×Mr

times, shown as the blue regions in Fig. 5. This third-level

cache consumes extra memory to prefetch data and increase

the data reuse rate. The p parallel systolic arrays will iterate

over the blue tiles while parallel SAs are working on the

light brown tiles. We can enumerate (Kr, Nr,Mr) to find

the optimal choice with maximum data reuse rate and satisfy

resource limitation.

In summary, our design space has three groups of parameters:

the shape of tiles (Mb, Nb,Kb), the parallelism parameters

(pm, pn, pk), and the reuse buffer parameters (Kr, Nr,Mr).
We can explore the design space by enumerating these values

to find out the optimal design with the maximum throughput.

IV. EXPERIMENTAL RESULTS

We choose Xilinx Virtex UltraScale+ VU9P as our experi-

mental platform. VU9P provides 2586 K system logic cells and
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TABLE I
OVERALL COMPARISON WITH OTHER MOBILENET V1 AND INCEPTION V4 IMPLEMENTATIONS.

Implementation Ours [26] [27] [28]
Model MobileNet V1 Inception V4 MobileNet V1 MobileNet V1 Inception V4

Platform XCVU9P Stratix V XCVU9P
Data type INT8 INT16 INT8 INT16 float

Frequency (Mhz) 300 125 200 180 180 160
Logic Utilization 246K (21%) 469K (40%) N/A N/A 543K (46%) 673K (57%) 1016K (86%)
DSP Utilization 5149 (75%) 5254 (77%) N/A 1664 (41%) 5130 (75%) 5130 (75%) 5130 (75%)

BRAM Utilization 1280 (59%) 1664 (77%) N/A N/A 562 (26%) 454 (21%) 475 (22%)
URAM Utilization 0 (0%) 0 (0%) N/A N/A 845 (88%) 845 (88%) 768 (80%)

Latency (ms) 0.54 5.29 0.40 0.88 6.03 6.97 28.26
Throughput (GOP/s) 3651 3448 2833 1287 1528 1319 325

TABLE II
DETAILS OF OUR DESIGNS.

Model MobileNet V1 Inception V4
(Mb, Nb,Kb) (8, 8, 8) (8, 8, 16)
(pm, pn, pk) (4, 4, 8) (4, 4, 8)
(Kr, Nr,Mr) (8, 8, 8) (8, 4, 4)

Memory Reduction 21.49% 44.18%

6840 DSPs. And it has about 40 megabytes on-chip memory

resources including 75.9 Mb block RAMs (BRAMs) and 270

Mb UltraRAMs (URAMs). Our design is implemented and

synthesized using Xilinx SDAccel 2019.1. We use quantized

CNN models based on INT8. By default, we use a batch size

of 1 for low-latency inference.

We choose MobileNet V1 [17] and Inception V4 [29],

because they have reduced parameters for better inference

performance. MobileNet V1 uses depthwise separable con-

volutions [16] to eliminate 3 × 3 filters. Inception structure

breaks down 7×7 filters into 7×1 and 1×7 filters. Therefore,

these models involve fewer 3× 3 filters like ResNet, or 7× 7
filters like AlexNet and VGG. This avoids the comparison with

domain-converting methods such as Fast Fourier algorithm [14]

and Winograd algorithm [15].

In Table I, we demonstrate the performance results compared

with other implementations. We compare our results with three

existing works [26], [27], [28]. BRAM usage is missing in two

of them [26], [27]. For Inception V4, our total SRAM usage

is smaller than Wei et al. [28] because they utilize URAMs,

and we do not. One URAM 288K unit provides 8× storage

space than BRAM 36K. We achieve a latency of 0.54 ms and

a throughput of 3.7 TOP/s for MobileNet V1; a latency of 5.29

ms and a throughput of 3.4 TOP/s for Inception V4.

In Table II, we show some details of our designs including

the parameters (Mb, Nb,Kb), (pm, pn, pk), and (Kr, Nr,Mr).
The parameters for MobileNet V1 is mainly based on the

(M = 512, C = 512, H = W = 14,Kh = Kw = 1) layer.

The difference between MobileNet V1 and Inception V4 is

that Inception V4 has more GEMM operations with larger K ′.
Most of the layers in Inception V4 has Kh · Kw = 3 or 7.

Therefore, we increase Kb for Inception V4.

In Fig. 6, we present our normalize memory usage for

MobileNet V1 by layers. The X-axis represents the shape

of GEMMs of the convolutional layers. The Y-axis is the

Fig. 6. Normalized memory usage of MobileNet V1.

normalized memory usage, and we use explicit GEMM’s

memory consumption as the baseline. We can see that the

top layers benefit from the low-memory GEMM more than the

bottom layers, because the top layers usually have larger feature

maps. Our method uses 78.51% memory (21.49% reduction)

for MobileNet V1 on average. For Inception V4, our design

uses 55.82% memory (44.18% reduction) on average.

V. CONCLUSION

In this paper, we evaluate a low-memory GEMM algorithm

for CNN inference on FPGAs. We design a novel accelerator

based on systolic arrays and corresponding three-level cache to

increase the parallelism and save the bandwidth. We evaluate

our implementation on MobileNet V1 and Inception V4.

Compared to other direct convolution implementations, we

achieve great throughput and latency performance. We also

reduce 21% to 44% memory usage compared to explicit GEMM

baselines.
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