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Abstract—This paper proposes a novel latency-hiding hard-
ware architecture based on column-wise matrix-vector multipli-
cation to eliminate data dependency, improving the throughput
of systems of RNN models. In addition, a flexible checkerboard
tiling strategy is introduced to allow large weight matrices,
while supporting element-based parallelism and vector-based
parallelism. These optimizations improve the exploitation of the
available parallelism to increase run-time hardware utilization
and boost inference throughput. Furthermore, a quantization
scheme with fine-tuning is proposed to achieve high accuracy.
Evaluation results show that the proposed architecture can
enhance performance and energy efficiency with little accuracy
loss. It achieves 1.05 to 3.35 times better performance and 1.22
to 3.92 times better hardware utilization than a state-of-the-
art FPGA-based LSTM design, which shows that our approach
contributes to high performance FPGA-based LSTM systems.

I. INTRODUCTION

Recurrent Neural Networks (RNNs) have been shown to

have useful properties with many significant applications.

Since they can record previous information to increase pre-

diction accuracy, RNNs are applied to sequence processing

problems such as speech recognition [1, 2], natural language

processing [3] and video classification [4, 5]. Among the many

RNN variants, the two most popular ones are Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU).

FPGAs have been used to speed up the inference of RNNs

[1, 6, 7, 8, 9], which offer benefits of low latency and low

power consumption compared to CPUs or GPUs.

However, the data dependency in RNN computation makes

systems stall until the required hidden vector returns from the

full pipeline to start the next time-step calculation. Moreover,

deep pipelining is often used to achieve a high operating

frequency, which makes stall penalty worse since the system

pipeline needs to be emptied. Besides, an inefficient tiling

strategy also makes hardware resources idle. The design in [8]

involves 6 matrix-vector multiplication (MVM) “tile engines”,

each processing 400 × 400 matrices. The tile engine results

are fed to an adder tree, so they are effectively processing

a 400 × 2400 matrix in parallel. Any MVM that does not

map to this dimension will leave some resources idle. Both

of these issues result in low hardware utilization, as shown in

Fig 1. The hardware utilization of Brainwave [8] is lower than

Fig. 1. Low hardware utilization of some existing LSTM Designs (ISCA18-
BW [8] and FCCM19-NPU [9])

50% for all the LSTM models. The BrainWave-like Neural

Processor Unit (NPU) [9] with a fine-grained zero-padding

scheme also suffers from low hardware utilization, especially

in LSTM models with medium sizes which are commonly

used in many applications [10, 11, 12].

This paper proposes a novel latency-hiding hardware ar-

chitecture and a flexible checkerboard tiling strategy for

RNNs/LSTMs to improve hardware utilization and boost in-

ference throughput. First, we propose column-wise matrix-

vector multiplications (MVM) for RNN/LSTM gates opera-

tions, which can eliminate the data dependency. The column-

wise block-striped decomposition of a matrix, as shown in

Fig. 2, is an effective parallel method of MVM used in

high-performance computing. However, most of the previous

FPGA-based designs of RNNs focus on row-wise MVM. In

our architecture, the calculation of the next time-step can

start without waiting for the system pipeline to be emptied,

which means that the system can be fully pipelined without

stall since it only needs a partial input vector to start the

computation. Besides, in the row-wise MVM, the vector needs

to be replicated so that the dot products can be computed in

parallel, while for the column-wise MVM, each element is

replicated for each column and so can be more efficient using

current FPGA architectures.

Moreover, we also propose a flexible checkerboard tiling

strategy incorporating Element-based Parallelism (EP) and

Vector-based Parallelism (VP) to boost inference throughput.
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Fig. 2. Column-wise matrix-vector multiplication

To support EP and VP, we propose a hybrid hardware archi-

tecture that combines a multiplier-adder-tree and a multiply-

accumulator. The architecture that deploys many parallel mul-

tipliers followed by a balanced adder-tree is commonly used in

FPGA-based RNN/LSTM accelerators [8, 9, 13, 14, 15]. These

designs are based on row-wise block-striped decomposition of

MVM. For the column-wise MVM we propose an architecture

deploying many parallel multipliers followed by accumulators

since the partial result vectors of column-wise MVM are

output from the pipeline cycle by cycle and then these partial

result vectors are accumulated one by one, as shown in

Fig. 2. Furthermore, a small balanced adder tree is placed

between the multipliers and the accumulators, which balances

the parallelism of EP and VP to increase throughput.

We make the following contributions in this paper:

• A novel column-wise MVM for RNNs with latency

hiding to increase the hardware utilization and system

throughput.

• A flexible checkerboard tiling strategy incorporating EP

and VP to exploit the available parallelism and further

increase the hardware utilization and scalability.

• A comprehensive evaluation of the proposed method and

hardware architecture.

II. BACKGROUND AND PRELIMINARIES

A. RNNs

RNNs are artificial neural networks which have feedback

connections and internal memory cells to record past infor-

mation about long-term dependencies over an arbitrary time.

They achieve high accuracy in many sequence processing

problems such as text analysis, speech recognition and video

classification.

LSTM was initially proposed in 1997 by Sepp Hochreiter

and Jürgen Schmidhuber [16]. This study follows the standard

LSTM cell [1, 8, 9, 12], as shown in Fig 3. The hidden state

ht is produced by the following equations:

it = σ(Wi[xt, ht−1] + bi)

ft = σ(Wf [xt, ht−1] + bf )

gt = tanh(Wg[xt, ht−1] + bu)

ot = σ(Wo[xt, ht−1] + bo)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

Fig. 3. Structure of an LSTM Cell

TABLE I
SYSTEM PARAMETERS

W Weights matrix

wn All the weights of the row number n in W

w′
n All the weights of the column number n in W

Wi[n],Wf [n],

Wg [n],Wo[n]
Row n in i, f, g, or o gate weights matrices

Hw Number of columns of weight matrix

Lw Number of Rows of weight matrix

xt The input vector x at timestep t

ht The hidden vector h at timestep t

xt[j] The element j of input vector x at timestep t

ht[j] The element j of hidden vector h at timestep t

Lx Number of elements in input vector x

Lh Number of elements in hidden vector h

NPE Number of processing elements

EP Element-based Parallelism

V P Vector-based Parallelism

TS Timestep

Here, σ, tanh and � stand for the sigmoid function, the

hyperbolic tangent function and element-wise multiplication

respectively. i, f, g and o represent the input, forget, input

modulation and output gate respectively. The input modulation

gate is often considered as a sub-part of the input gate.

The input vector and hidden vector are combined so that W
represents the weight matrix for both input and hidden units.

Bias is represented as b. The output ct is the internal memory

cell state and ht is the output of the cell, also called the hidden

state, which is passed to the next time-step or next layer. The

gates control the information flow inside the LSTM unit. The

input gate decides what new information is to be written into

the memory cell; the forget gate decides what old information

is no longer needed and can be removed; the input modulation

gate is used to modulate the information that the input gate

will write into the memory Cell by adding non-linearity to

the information; the output gate decides what the next hidden

state should be.

Gated Recurrent Unit (GRU) is a variant of LSTM. It

combines the forget and input gates into a single “update gate”

and it has fewer parameters than the standard LSTM models.

Our work focuses on the optimization of the standard LSTM

and GRU but the proposed techniques can be applied to other

RNN and LSTM variants.
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(a) Row-wise matrix-vector multiplication (b) Pipeline analysis

Fig. 4. Row-wise matrix-vector multiplication, showing the data dependency of LSTM

Fig. 5. The weights matrix, showing interlacing of Wi[n], Wf [n], Wg [n]
and Wo[n]

III. DESIGN AND OPTIMIZATION METHODOLOGY

This section analyzes the data dependency problem and

introduces several optimizations for RNN designs. We define

the system parameters in Table I which are used for later

calculations.

A. Weights Matrix of LSTM Gates

The four matrices of i, f, o, u gates of LSTMs share the

same size. In our design, they are combined into one large

matrix. Thus, in one time-step for the LSTM algorithm, we

only need to focus on optimizations of one large matrix

multiplying one vector for the whole LSTM cell instead of four

small matrices multiplying one vector which is decentralized.

Since each gate matrix has the size of Lh × (Lx + Lh), the

large combined matrix has the size of (4×Lh)× (Lx+Lh).
Then we have the following equations:

Hw = 4× Lh (1)

Lw = Lh+ Lx (2)

Besides, the weights of the four LSTM gates are interlaced

in the matrix. For example, the first four rows of our weights

matrix W are respectively the first row of the weights matrix

for the input gate, forget gate, input modulation gate and

output gate, as shown in Fig. 5. Therefore, the related elements

in the result vector from four gates are adjacent and can be

reduced via the element-wise operations in the LSTM-tail unit.

B. Conventional design of MVM for RNNs and its problem

The conventional implementation of matrix-vector multipli-

cation (MVM) for RNNs is row-wise, and it involves the entire

vector of (xt, ht−1) and an entire row of the weights at a

time. However, this approach imposes additional stalling as

the system needs to wait for newly computed hidden vector

before starting the next time-step.

Data hazard exists because the whole new hidden vector ht

is required to start the new computation of xt+1 in the con-

ventional design of MVM for RNN/LSTM. This is mainly due

to the data dependency between the output from the current

time-step and the vector for the next time-step as shown in

Fig. 4. It indicates that the whole system pipeline needs to

be emptied to get the new computed hidden vector ht before

the new matrix-vector operations can start. As [8] mentions,

RNN programs have a critical loop-carry dependence on the

ht vector. If the full pipeline cannot return ht to the vector

register file in time to start the next time-step then the MVM

unit will stall, as shown in Fig. 4b. Therefore, pipeline latency

is important. On the other hand, deep pipelining is needed to

achieve a high operating frequency for the design. This makes

it difficult to obtain designs with the best trade-off.

C. The Proposed column-wise MVM for RNNs/LSTMs

We propose a new technique that can alleviate this problem

by calculating the matrix-vector operations in a column-wise

manner. At the beginning, only a few elements from the xt

vector are used while ht−1 is not touched, but all the elements

in the corresponding columns of the weights matrix are used

to do the operations, as shown in Fig. 6a. To illustrate the

idea, the latency of the system in the figure is shown as

four, however, the real system latency can be much larger. In

addition, only one element in the xt vector is selected to do the

calculation in this figure; however, the actual number of the
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(a) Column-wise matrix-vector multiplication (b) Pipeline analysis

Fig. 6. Column-wise matrix-vector multiplication with LSTM data dependency eliminated

Fig. 7. Two example pipelines of a LSTM case with 3 timesteps utilizing
row-wise MVM and column-wise MVM

involved elements of each cycle in the xt vector depends on

the parallelism of the system. The partial result vector comes

from the small dot-product of the partial xt vector and the

corresponding weights. It is accumulated cycle by cycle to

form the final result vector. In this way, the calculation of the

new inference of (xt+1, ht) can start without waiting for the

system pipeline to be emptied to get the ht since it only needs

a partial input vector, which means that the system can be fully

pipelined without stall, as shown in Fig. 6b and Fig. 7. Each

hidden vector can finish the computation in the shadow region

of processing xt before it is used.

As [17] mentions, the column-wise MVM only needs a

partial input vector, but it produces the output vector later than

row-wise since it waits for all the columns to be processed

to get the final accumulated output vector. It seems that the

succeeding hardware units that depend on the output vector

(e.g., those that do activation functions and element-wise

operations in the RNNs) would need to wait longer. While the

row-wise MVM computes a subset of output vector completely

before moving to the next subset. So, a subset of the final

output vector is completed sooner than in a column-wise case.

However, in the column-wise MVM, the succeeding units can

get an entire output vector and not a subset. It does start

the subsequent processing later than the one using row-wise

MVM. However, increasing the number of succeeding units

can help the system to finish the processing sooner than the

row-wise case. Practically, we do not need to introduce many

Fig. 8. The Element-based Parallelism (EP) and Vector-based Parallelism
(VP) with a tile shaded in blue

of these units since they will get only one input for a while.

When the xt vector is small while the ht vector is large,

the system may still stall since the cycles of processing xt

vector can not fully cover the whole pipeline latency to get the

ht ready before it is needed. However, with the column-wise

MVM, we can still process MVM of xt and its corresponding

weights when we are waiting for the ht to be computed. While

in the row-wise MVM, no new computation can process before

ht is computed. Moreover, when the input vector is short the

LSTM models may not need a large hidden vector, otherwise

it may bring overfitting easily.

D. Two Types of Parallelism and Tiling

To further exploit the available parallelism, we introduce

Element-based Parallelism (EP) and Vector-based Parallelism

(VP) in our design, as shown in Fig. 8. The weights matrix

is tiled into small blocks with a size of (EP, V P ). The pro-

posed fine-grained tiling allows large weights to be processed

sequentially. While within each tile, there is parallelism. In

each cycle, our engine can process a tile of weights matrix

and a sub-vector of [xt, ht−1] with a size as EP .

EP and V P need to be carefully chosen so that the number

of cycles to process the xt vector, given by Lx
EP , is larger than

the system latency to make sure the computation of hidden
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Fig. 9. System cycle number ratio depending on different EPs and different sizes of LSTM models

vectors can finish in the shadow of processing xt vector. This

number is small when the EP is large and it may still bring

system stall. To increase system parallelism, V P is chosen to

be as large as possible. However, the largest number of V P is

Hw, which equals 4× Lh, since there are only four gates in

LSTM. GRU is smaller than LSTM since it has fewer gates

than LSTM. In summary, the hardware utilization and system

throughput can be improved via balancing EP and V P .

E. Design Space Exploration

When the previously discussed configurations are combined,

we can characterize the hardware design space of a tiling

block by (EP, V P ) and the NPE, the number of processing

elements. The effective performance varies with the number

of PEs and tile size. To find out the optimal configuration

parameters for our in-depth study, a cycle-accurate simulator

is developed to conduct design space exploration. We propose

a heuristic, greedy algorithm to explore design space. It starts

with EP = 1 while the V P is given according to the system

constraints shown in equations (3) and (4).

V P ≤ Hw = 4× Lh (3)

V P ≤ NPE

EP
(4)

Practically, EP and V P should be as large as possible

since when they increase the parallelism increases, which

results in high throughput. However, when EP increases, the

cycle number of processing the input vector (Lx) decreases so

that the system may not have sufficient cycles to completely

hide the processing of the hidden vector as we discussed in

Section III-C. In our exploration, we set the V P as large as

possible, which is min(4 × Lh, NPE
EP ). Fig. 9 presents the

exploration results for different sizes of LSTM models, which

are from 256 to 1536 with different colors, using our hardware

design when the NPE is 4096 and 16384. The cycle number

of processing determines the throughput of the system and

the fewer, the better. As shown in Fig. 9, when EP is small,

the processing cycle is large because the V P is constrained by

Fig. 10. System overview

equation (3) so that the effective PEs are less than NPE. From

our result, the optimal configuration is a set of EP from 4 to

16. In these sweet spots, we can gain the highest parallelism

which results in the highest system throughput.

IV. HARDWARE ARCHITECTURE

The proposed hardware architecture for neural network

implementation is presented in this section.

A. System details

Fig. 10 shows the overall system while Fig. 11 and Fig. 12

show the details of a computational kernel unit and an LSTM-

tail unit respectively. There are V P kernels and each kernel

has EP Processing Elements (PEs), so the effective number of

PEs is V P ×EP . The V P and EP values are determined via

the design space exploration in Section III-E. The Adapter is

used to convert the parallelism between kernels and tails. Then,

De-Quantization (De-Quant) is applied to convert quantized

values into fixed-point values. The Sigmoid (σ) and hyperbolic

tangent (tanh) functions are implemented using lookup tables

of size 2048 [2, 9]. The LSTM-tail unit as shown in Fig. 12 and

GRU-tail unit mainly perform the element-wise operations.

Several FIFOs in these tail units are utilized to synchronize

the data and they are not shown in the figure. The output

hidden vector (ht) needs the quantization (Quant) before it

can be used in the MVM kernels, so a Quant unit is utilized

after the final output of LSTM-tail units as shown in Fig. 10.

Generally, the row-wise MVM is based on an architecture

with parallel multipliers followed by a balanced adder tree.

Accumulating the products of these multiplications is usually

achieved using a balanced adder tree structure so that a number
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Fig. 11. The kernel unit

Fig. 12. The LSTM-tail unit

of related additions can be scheduled in parallel and the latency

of the system can be minimized. The column-wise MVM is

based on the architecture of parallel multipliers followed by

parallel accumulators, since the elements in the partial result

vector are not related. To support element-based parallelism, a

small balanced adder tree is placed between the multipliers and

the accumulators, as shown in Fig. 11. This adder tree can help

to balance EP and V P to improve parallelism. Furthermore,

each kernel has a component of quantization compensation to

efficiently handle zero-points in quantized MVM operations

[18].

B. FPGA DSP sharing for 8-bit multiplications

The DSP blocks in modern FPGAs, which are highly

configurable, are often underutilized when implementing 8-

bit RNN systems. [19] showed methods to extract two INT8

multipliers from Xilinx DSP48E2 Blocks which contain a

27x18 multiplier. [20] illustrated a method to pack 2 INT8

multiplications into one INT18 multiplier with extra ALMs.

Both these methods require two multiplications to share one

input operand. In our column-wise architecture, the compu-

tation order of MVM is different from the one in row-wise

MVM. With our column-wise MVM using in RNN designs,

one column of the weights matrix naturally shares the same

element of the input vector and conducts the multiplications

at the same time. Thus, these multiplications share one input

operand, which helps us to pack four INT8 multiplications into

one DSP blocks on Intel FPGAs [20] to reduce the hardware

resources.

V. QUANTIZATION AND FINE TUNING

A. Data Quantization

Numerous prior efforts [2, 8, 21, 22, 23] have shown that

RNNs/LSTMs are robust to low bit-width quantization. Instead

TABLE II
ACCURACY DISCUSSION

LRCN Orig.[12]

(Inception-v3+LSTM)
FPL’17 [27] This work

Precision Float 32-bit Fixed 12-bit Fixed 8-bit

Accuracy 70.36% 42.0% 70.10%

of using double or single precision floating-point representa-

tion, fixed-point representation can be used in FPGA-based

RNN accelerators to achieve high performance and high power

efficiency. In this work, we convert the input activations, the

hidden units and the weights to 8-bit integers. We perform all

arithmetic operations in fixed point and check that there is no

significant accuracy degradation after fine-tuning is applied. To

quantize and dequantize a real value r, we use the following

mapping [18]:

r = S(q − z) (5)

where scale S and z are our quantization parameters. The S
is an positive real number given by (rmax − rmin)/(qmax −
qmin). Note that rmax and rmin are maximum and minimum

values of a real value respectively; qmin and qmax represent

the range of an 8-bit integer (0 and 255 in our implementation).

The parameter S scales an RNN/LSTM network and z denotes

a zero point. It is important to note that S is a floating-point

number whereas the zero-point is of the same type as quan-

tized values (q) which is an 8-bit integer. However, modern

implementations often bypass this floating-point multiplication

by approximation techniques shown to have a negligible effect

on the accuracy of the net.
To maintain accuracy and avoid data overflow, we propose

partial quantization [24, 25] to extend the bit-width of inter-

mediate data. In this work, an 8-bit fixed-point data format

is proposed to implement the multipliers in the LSTM gates.

All the 16-bit products of the multiplications are passed to the

adder tree to keep accuracy. The accumulators are 32-bit. The

multipliers and adders for the element-wise operations in the

LSTM-tail are all 16-bit fixed-point.

B. Fine Tuning
Quantization-aware fine-tuning [18] is applied to our quan-

tized RNN/LSTM to recover accuracy. The gradient, weight,

activation tensors are stored in floating-point. To emulate

quantization error, all the operations are performed in a fixed-

point manner. Therefore, the conversion between floating-

point data and fixed-point data is applied before and after

each operation to match the data format. With the help of

quantization-aware fine-tuning, we evaluate the performance

and power efficiency of the proposed LSTM accelerator using

real-time video activity recognition for the UCF101 dataset

[26] with little accuracy loss. This is quantified in Table II.

VI. EVALUATION AND ANALYSIS

This section presents hardware implementation results

across two generations of Intel FPGAs that demonstrate the

scalability of the proposed optimizations for RNNs.
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TABLE III
RESOURCE UTILIZATION

ALMs M20K DSP Freq.
Arria 10
(1150)

186534 (44%) 1178 (43%) 1176 (77%) 259Mhz

Stratix 10
(2800)

487232 (52%) 10061 (86%) 4368 (76%) 260Mhz

TABLE IV
PERFORMANCE COMPARISON OF BW, FCCM19-NPU AND OUR

DESIGN

benchmark BW[8]
FCCM19

-NPU[9]
This Work

GRU

h=512

TS=1

latency (ms) 0.013 0.00145 0.00058

HW Utilization 0.5% 21.7% 64.1%

Perf.(TOPS) 0.25 2.17 5.46

GRU

h=1024

TS=1500

latency (ms) 3.792 3.139 2.59

HW Utilization 10.4% 60.2% 85.5%

Perf.(TOPS) 4.98 6.01 7.28

GRU

h=1536

TS=375

latency (ms) 0.951 1.454 1.36

HW Utilization 23.3% 73.2% 91.4%

Perf.(TOPS) 11.17 7.30 7.79

LSTM

h=256

TS=150

latency (ms) 0.425 0.110 0.033

HW Utilization 0.8% 14.3% 56.1%

Perf.(TOPS) 0.37 1.43 4.79

LSTM

h=512

TS=25

latency (ms) 0.077 0.027 0.014

HW Utilization 2.8% 38.8% 85.9%

Perf.(TOPS) 1.37 3.89 7.33

LSTM

h=1024

TS=25

latency (ms) 0.074 0.064 0.054

HW Utilization 2.8% 65.7% 90.7%

Perf.(TOPS) 5.68 6.56 7.73

LSTM

h=1536

TS=50

latency (ms) 0.145 0.246 0.236

HW Utilization 27.1% 76.9% 94.1%

Perf.(TOPS) 13.01 7.67 8.02

A. Experimental Setup

For our study, we choose our benchmark workloads from

the DeepBench suite [8, 9] for a fair and direct comparison.

It is a set of micro-benchmarks containing representative

layers from popular DNN models such as DeepSpeech [28].

Two generations of Intel FPGAs, an Arria 10 1150 (A10)

and Stratix 10 2800 (S10) are evaluated and compared with

previous work. Both run persistent LSTM/GRU models of

inference designed using Verilog RTL. Quartus Prime 18.1

is used to target both A10 and S10.

B. Resource Utilization

Table III shows the resource utilization of our designs with

two configurations on FPGAs. We implement the configuration

of (EP, V P ) as (16, 1024) using a Stratix 10 FPGA which

includes 16384 effective 8-bit multipliers in the MVM kernels.

A small version with the configuration of (EP, V P ) as (4,

1024) is implemented using an Arria 10 FPGA which has

4096 8-bit multipliers in the MVM kernels. Although we

achieve a similar frequency to which reported in the original

BW paper [8] and Intel-NPU [9], we believe that further low-

level optimizations can be applied to our implementation to

Fig. 13. Hardware utilization of LSTMs

Fig. 14. Hardware utilization of GRUs

achieve even higher operating frequencies. We leave that for

future work since it has a limited impact on the conclusions

we draw from our study in this paper.

C. Case Study

RNNs have many variants that target different applications.

In our work, we choose the LRCN [12] as a case study

which is applied for video activity recognition. Generally,

the LRCN is implemented using a CNN to extract a fixed-

length vector of features which are then passed to a recurrent

sequence learning component, such as an LSTM. We choose

the features of each video frame from the average pool layer

of an Inception-v3 model which has been pre-trained on the

ImageNet dataset. The LSTM part of the LRCN RGB model

which has 256 hidden units is implemented. Quantization-

aware fine-tuning [18] is applied to our quantized LSTM

to recover accuracy as discussed in Section V-B with little

accuracy loss as shown in Table II.

D. Performance and Efficiency Comparison

To illustrate the benefits of our proposed approach, some

existing FPGA-based LSTM/GRU accelerator designs are

compared with ours in Table IV and Table V. The DeepBench

published results [8] on a modern NVIDIA Titan Xp GPU
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TABLE V
COMPARISON WITH PREVIOUS IMPLEMENTATIONS OF LSTM

2016[29] 2017[1] 2017[23] ESE[2] FP-DNN[14] FINN-L[15] BW[8] FCCM19-NPU[9] This work

FPGA
Virtex7

VX485T

Virtex7

VX485T

Zynq

Z7045

Kintex

KU060

StratixV

GSMD5

Zynq

ZU7EV

Stratix10

GX2800

Stratix10

GX2800

Stratix10

GX2800

Model Storage on-chip off-chip on-chip off-chip off-chip on-chip on-chip on-chip on-chip

Precision (bits) 18 fixed Float32 5 fixed 12 fixed 16 fixed 1-8 fixed BFP8 8 fixed 8 fixed

DSP Used - 1176 - 1504 1036 - 5245 (91%) 4880 (85%) 4368 (76%)

Frequency (MHz) 141 150 142 200 150 266 250 260 260

Performance

(GOPS)
4.56 7.26 693 282 316 1833

370a

22620

1431a

7980

4790a

8015

Power Efficiency

(GOPS/W)
- 0.37 55.88 6.87 12.63 - 180 118 129

LSTM Hardware

Utilization
- - - - - -

0.8%a

47.1%

14.3%a

76.9%

56.1%a

94.1%

a When targeting a small LSTM model (h=256).

is also included. For a fair comparison, we only show the

previous work with a detailed implementation of the LSTM

system. We show the latency, hardware (HW) utilization,

throughput, FPGA chips, model storage, precision, run-time

frequency, average throughput and power efficiency. Hardware

utilization is the percentage of run time during which the

hardware is not idle. With a similar number of DSP resources

to [9], our design achieves 94.1% hardware utilization which is

the highest with respect to state-of-the-art implementations on

FPGAs, as shown in Fig. 13 and Fig. 14. Overall, our design

provides over 1.05 to 3.35 times higher performance and 1.22

to 3.92 times higher hardware utilization than the state-of-the-

art design [9] respectively, as shown in Table IV. The results

show flexible customizability of our architecture for different

scenarios.

VII. RELATED WORK

There has been much previous work on FPGA based

RNN/LSTM implementations as shown in Table V. Rybalkin

et al. [23] are the first to propose and design a 5-bit fixed-

point BiLSTM hardware architecture for OCR. In their later

work [15], FINN-L employs 1-8 bits as the quantized im-

plementation which surpasses a single-precision floating-point

accuracy for a given dataset. Guan et al. [1] propose a smart

memory organization with on-chip double buffers to overlap

computations with data transfers. An automated framework

is proposed [14] for mapping CNNs and RNNs on FPGAs.

[30] proposes the cross-kernel optimization within RNN cells

targeting Plasticine [31], a coarse-grained reconfigurable ar-

chitecture (CGRA). [8] proposes a Brainwave variant which

is a single-threaded SIMD architecture for persistent RNNs.

[9] introduces a Brainwave-like neural processing unit (NPU)

for RNNs. They also propose TensorRAM for large persistent

data-intensive RNN sequence models. All of these RNN

designs are based on row-wise MVM and suffer from data

dependency. Deploying the proposed latency-hiding hardware

architecture involving column-wise MVM and the proposed

flexible checkerboard tiling strategy, our design can achieve

high throughput and hardware utilization. For the commonly

used INT8 precision, we achieve a throughput of 8015 GOPS

which is the highest with respect to state-of-the-art INT8

FPGA-based RNN designs. The only prior work that provides

a higher throughput is [8] using 8-bit block floating-point.

However when targeting small LSTM model, our throughput

is 12.95 times higher than [8] and 3.35 times higher than

[9]. Furthermore, we achieve the highest hardware utilization

among all these designs across various LSTM models.

In addition, in [32, 15, 14], a batching technique is intro-

duced to improve the performance and utilization of LSTM

inference. Since our design executes a single input at a time,

increasing batch size does not affect the utilization.

[9] also provides an INT4 design which achieves higher

performance than an INT8 design using the same FPGA

device. Some designs use binarised datapath [15, 33, 34].

Utilizing low precision is orthogonal to our proposed approach

which transforms computation to eliminate data dependency.

The technique of low precision is complementary to our

approach to achieve even higher performance and efficiency.

Since useful inference results may not be possible when bit-

width is too small, we target INT8 using linear quantization

[18] which is used in many DNN-based applications.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel latency-hiding hardware archi-

tecture based on column-wise MVM and a flexible checker-

board tiling strategy for RNNs/LSTMs to improve hardware

utilization and boost inference throughput. We have imple-

mented the proposed accelerator on Arria 10 and Stratix 10

FPGAs with superior performance and efficiency which show

the effectiveness of our approach. Further research includes

combining our method with in-memory computing and the

automation of the proposed approach to enable rapid develop-

ment of efficient RNN/LSTM designs.
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