Floorplanning for Partially-Reconfigurable FPGAs via Feasible Placements Detection

May 5, 2015

Marco Rabozzi: marco.rabozzi@mail.polimi.it

Antonio Miele: antonio.miele@polimi.it

Marco D. Santambrogio: <u>marco.santambrogio@polimi.it</u>

Politecnico di Milano

Rationale and Novelty

- Problem statement
 - Given a partially-reconfigurable FPGA, find on-chip area constraints to meet the design requirements
- Novelty:
 - Efficient exploration of the solution space driven by tight LP relaxations of the problem
 - Control on the shapes and positions of allowed areas
 - Possibility to customize the objective function by giving an arbitrary cost to each different area

Floorplanning problem

- Given:
 - The FPGA description
 - A set N of reconfigurable regions (RRs)
 - The resource requirements $\forall n \in N$
- Goal:
 - Find a rectangular area for each region, such that:
 - No two regions overlap
 - Complete tiles are covered
 - All the resource requirements are met
 - A given objective function is optimized

Proposed Approach

MILP model overview

Placements conflict graph

Derived from a clique of size 3: tighter formulation + constraints compaction

- N: set of regions (A, B, C)
- P_n : set of feasible placements for region n (P_A ={1,2,3}, P_B ={4,5}, P_C ={6,7})
- Variables:
 - *x_{n,p}*: binary variable set to 1 if and only if region *n* is assigned to placement *p*
- Constraints:
 - No conflicting placements
 - One placement for each region

Benchmark results

- 20 designs with different number of regions and device occupancy rates to test the effectiveness of the proposed approach (PA)
- Global wire length objective function to compare to [1] and [2]
- MILP solver execution time limited to 1800 seconds

# RRs	Ave impr	rage wire l ovement w	ength .r.t. [1]	Average execution time (sec)					
	HO[2]	O [2]	PA	[1]	HO [2]	O [2]	PA		
5	6.99%	7.48%	7.46%	11.0	18.2	125.8	129.1		
10	7.56%	12.05%	17.85%	24.1	111.5	1911.5	1803.7		
15	8.83%	19.46%	31.59%	41.1	136.3	1936.4	1805.2		
20	5.47%	19.98%	29.95%	65.5	123.0	1923.0	1806.4		
25	5.52%	19.84%	38.11%	94.0	175.8	1975.8	1807.5		
Average wire lengthOccupancyimprovement w.r.t. [1]					Average execution time (sec)				

Occupancy	Average wire length improvement w.r.t. [1]			Average execution time (sec)			
	HO [2]	O [2]	PA	[1]	HO [2]	O [2]	PA
70%	8.44%	19.87%	28.61%	47.4	162.2	1633.2	1486.1
75%	5.49%	20.29%	25.43%	47.3	120.8	1568.5	1447.7
80%	6.20%	13.33%	25.89%	47.1	92.1	1553.6	1462.5
85%	7.36%	9.56%	20.04%	46.7	76.8	1542.7	1485.3

 Bolchini, C., Miele, A., and Sandionigi, C.: Automated Resource-Aware Floorplanning of Reconfigurable Areas in Partially-Reconfigurable FPGA Systems. In <u>FPL</u>, pages 532-538, 2011.
Rabozzi, M., Lillis, J., and Santambrogio, M. D.: Floorplanning for Partially-Reconfigurable FPGA Systems via Mixed-Integer Linear Programming. In <u>FCCM</u>, pages 186-193, 2014.

THANK YOU! FOR ADDITIONAL QUESTIONS CONTACT ME marco.rabozzi@mail.polimi.it

Feasible placements generation

- A placement **p** for region **n** is feasible if it covers all the resources required by region **n** and does not overlap with user defined invalid areas
- Placements generation strategies:
 - **P**_n: all feasible placements
 - Provable optimal solutions
 - High exploration cost
 - P_n^{irr} : irreducible placements
 - Provable optimal solutions for area minimization
 - Preserve problem feasibility
 - Low exploration cost
 - P_n^w : width-reduced placements
 - Suitable for wire length optimization
 - Medium exploration cost

 $\notin P_n^w$, $\notin P_n^{irr}$: The width can be reduced

backup