

A Novel High-Throughput Acceleration Engine for Read Alignment

Yu-ting Chen, Jason Cong, Jie Lei, Peng Wei

Read Alignment: An Approximate Matching Problem

However...it is not as easy as we thought

In theory

$$\begin{split} H(i,j) = \max \left\{ \begin{matrix} 0 \\ H(i-1,j-1) + \ w(a_i,b_j) & \text{Match/Mismatch} \\ H(i-1,j) + \ w(a_i,-) & \text{Deletion} \\ H(i,j-1) + \ w(-,b_j) & \text{Insertion} \end{matrix} \right\}, \ 1 \leq i \leq m, 1 \leq j \leq n \end{split}$$

~ 30 Lines of C Code, Simple, Well-shaped, Anti-diagonal Parallelism, Well Studied

In practice...

~ 150 Lines of C Code, Complicated, Full of Dependencies, No Parallelism, Existing work can not even achieve the same results

Challenge 1: Bioinformaticians have done something we dislike

Challenge 2: Input Size Varies Dramatically

Query Length Histogram

Accelerator Architecture

Accelerator Architecture

Experimental Results

Performance Improvement over CPU

Experimental Results

Performance Improvement Over Wavefront-based Designs

