#### SSketch: An Automated Framework for Streaming Sketch-based Analysis of Big Data on FPGA\*

Bita Darvish Rouhani, Ebrahim Songhori, Azalia Mirhoseini, and Farinaz Koushanfar Department of ECE, Rice University Houston Texas, USA





\* This work was supported in parts by the Office of Naval Research grant (ONR- N00014-11-1-0885)

# Introduction

- Era of big data
  - Decision making
  - Find patterns
  - Prevent failures
- Applications
  - Medical
  - Cybersecurity
  - Media/social networks
  - Finance
- Machine learning and statistical optimizations are main enablers







NETFLIX

# Efficient Data Transformation

- Data transformation
  - Compact representation of the data collection
  - Exploiting the redundancy present in the dataset
- An efficient data transformation should simultaneously consider the:
  - Scalability
  - Application
  - Underlying platform constraints



#### Ensemble of Lower Dimensional Structures

• Many modern massive datasets are either low-rank or lie on a union of lower dimensional subspaces<sup>[1]</sup>



Original dense dataset  $A_{m \times n}$ 





Ensemble of lower dimensional structures



#### SSketch Framework

- Streaming Sketch-based analysis of big data using FPGA
- Transforming the big data with dense correlations to an ensemble of lower dimensional subspaces
- Streaming applications:
  - Limited storage
  - Single pass access to data



# SSketch Framework

- The transformed data is applicable to a broad set of matrix-based data analysis algorithms:
  - Regularized loss function optimization
  - Power method
  - Image processing
    - De-noising
    - Super-resolution
    - Classification



## SSketch Methodology

• Data transformation:

 $\min_{\mathbf{D}\in R^{m\times l}, \mathbf{V}\in R^{l\times n}} \|\mathbf{A} - \mathbf{D}\mathbf{V}\|_F \text{ subject to } \|\mathbf{V}\|_0 \le kn$ 

- Adaptive error-based dictionary learning
- Single pass access to data

```
Algorithm 1 SSketch algorithm
       Inputs: Measurement matrix A, projection threshold
       \alpha, sparsity level k, error threshold \epsilon, and dictionary
       size l.
       Output: Matrix D, and coefficient matrix V.
  1: D \leftarrow empty
  2: j \leftarrow 0
  3: for i = 1,...,n do
             W(\mathbf{A}_i) = \frac{\|\mathbf{D}(\mathbf{D}^t\mathbf{D})^{-1}\mathbf{D}^t\mathbf{A}_i - \mathbf{A}_i\|_2}{\|\mathbf{A}_i\|_2}
  4:
             if W(\mathbf{A}_i) > \alpha and j < l then
  5:
                   \mathbf{D}_j = \mathbf{A}_i / \sqrt{\|\mathbf{A}_i\|_2}
  6:
             \mathbf{V}_{ij} = \sqrt{\|\mathbf{A}_i\|_2}
  7:
                   j \leftarrow j + 1
  8:
     \label{eq:Vi} \begin{array}{c} \mathbf{V}_i \leftarrow OMP(\mathbf{D}, \mathbf{A}_i, k, \epsilon) \\ \text{end if} \\ \text{end for} \end{array}
  9:
10:
```

# SSketch Methodology

• Data transformation:

 $\min_{\mathbf{D} \in R^{m \times l}, \mathbf{V} \in R^{l \times n}} \|\mathbf{A} - \mathbf{D}\mathbf{V}\|_F \text{ subject to } \|\mathbf{V}\|_0 \le kn$ 

- Block splitting
- Amenable to FPGA accelerator



Schematic depiction of blocking SSketch

# SSketch API

- Inputs:
  - Stream of input data
  - SSketch Algorithmic parameters
- Outputs:
  - Dictionary matrix D
  - Block-sparse matrix V
- SSketch consists of two main components:
  - Dictionary learner unit
  - Data sketching unit



## Adaptive Dictionary Learning

- By Streaming the input data, SSketch adaptively:
  - Learns/updates the corresponding dictionary of each block
  - Computes the data sketch



## Adaptive Dictionary Learning

- By Streaming the input data, SSketch adaptively:
  - Learns/updates the corresponding dictionary of each block
  - Computes the data sketch



## Data Sketching

- Computing the block-sparse matrix V
  - Applying the efficient, and greedy Orthogonal Matching Pursuit (OMP) routine
- Asynchronous parallel approach via a control unit



### Hardware Implementation

- Xilinx Virtex-6 FPGA ML605 Evaluation
- IEEE 754 single precision floating point format
- Resource utilization





#### Virtex-6 resource utilization

|                 | Used  | Available | Utilization |
|-----------------|-------|-----------|-------------|
| Slice Registers | 50888 | 301440    | 16%         |
| Slice LUTs      | 81585 | 150720    | 54%         |
| RAM B36E1       | 382   | 416       | 91%         |
| DSP 48E1s       | 356   | 768       | 46%         |

# **OMP** Routine

- OMP is mainly consists of three steps:
  - Find best fitting column
  - LS optimization
  - Residual update
- Use QR decomposition to address the LS optimization

Algorithm 2 OMP algorithm

```
Inputs: Matrix D, measurement A<sub>i</sub>, sparsity level k, threshold error ε.
Output: Support set Λ and k-dimensional coefficient vector v.
1: r ← A<sub>i</sub>
2: Λ<sup>0</sup> ← Ø
3: for i = 1,...,k do
4: Λ ← Λ ∪ argmax<sub>j</sub>| < r<sup>i-1</sup>, D<sub>j</sub> > | Find best fitting column
5: v<sup>i</sup> ← argmin<sub>v</sub> ||r<sup>i-1</sup> - D<sub>Λ<sup>i</sup></sub>v ||<sub>2</sub><sup>2</sup> LS Optimization
6: r<sup>i</sup> ← r<sup>i-1</sup> - D<sub>Λ<sup>i</sup></sub>v<sup>i</sup> Residual Update end for
```

## **Benchmark Datasets**

- Three different datasets:
  - Light Field imaging

• A sequence of multi-dimensional array of images that are simultaneously captured from slightly different viewpoints



• Hyper-Spectral imaging

• A sequence of images generated by hundreds of detectors that capture the information from across the electromagnetic spectrum

• Synthetic data



#### **Evaluation Results**

$$Xerr = \frac{\|\mathbf{A} - \tilde{\mathbf{A}}\|_{F}}{\|\mathbf{A}\|_{F}} , \quad \tilde{\mathbf{A}} = \mathbf{D}\mathbf{V}$$
$$Gerr = \frac{\|\mathbf{A}^{t}\mathbf{A} - \tilde{\mathbf{A}}^{T}\tilde{\mathbf{A}}\|_{F}}{\|\mathbf{A}^{t}\mathbf{A}\|_{F}}$$
$$Compression\_rate = \frac{nnz(\mathbf{D}) + nnz(\mathbf{V})}{nnz(\mathbf{A})}$$

• Data sketching error decreases as the dictionary size increases





#### **Evaluation Results**

$$Xerr = \frac{\|\mathbf{A} - \tilde{\mathbf{A}}\|_{F}}{\|\mathbf{A}\|_{F}} , \quad \tilde{\mathbf{A}} = \mathbf{D}\mathbf{V}$$
$$Gerr = \frac{\|\mathbf{A}^{t}\mathbf{A} - \tilde{\mathbf{A}}^{T}\tilde{\mathbf{A}}\|_{F}}{\|\mathbf{A}^{t}\mathbf{A}\|_{F}}$$
$$Compression\_rate = \frac{nnz(\mathbf{D}) + nnz(\mathbf{V})}{nnz(\mathbf{A})}$$

• There is a trade-off between the sketch accuracy and the number of non-zeros in the block-sparse matrix V







#### **Evaluation Results**

- SSketch total processing time is linear in terms of the number of processed samples
- Runtime:  $T_{SSketch} \approx T_{dictionary} + T_{Communication} + T_{FPGA}_{Computation}$ 
  - SSketch runtime is dominated by  $T_{FPGA}_{Computation}$

| Size of n | $T_{SSketch} \\ (l = 128)$ | $T_{SSketch} \\ (l = 64)$ |
|-----------|----------------------------|---------------------------|
| 1k        | 3.635s                     | 2.31s                     |
| 5k        | 21.029s                    | 12.01s                    |
| 10k       | 43.446s                    | 24.32s                    |
| 20k       | 90.761s                    | 48.52s                    |

 $m_b = 256, \epsilon = 0.01, and \alpha = 0.1$ 

# Conclusion

- Adaptive hardware-accelerated streaming-based data transformation
- Scalable streaming-based sketching methodology
  - Amenable to FPGA acceleration
  - Fixed, and low memory footprint
- User-friendly API
  - Rapid prototyping of an arbitrary matrix-based data analysis
- Scalable, floating-point implementation of OMP on FPGA
- Up to 200 folds speed up compared to the software-only realization
- Less than 4% message passing delay for communication between the processor and accelerator

# Acknowledgment



• From left to right:

Bita Darvish Rouhani, PhD. student, Rice University (<u>bita@rice.edu</u>) Ebrahim Songhori, PhD. student, Rice University (<u>ebrahim@rice.edu</u>) Azalia Mirhoseini, PhD. student, Rice University (<u>azalia@rice.edu</u>) Farinaz Koushanfar, Associate Professor, Rice University (<u>farinaz@rice.edu</u>)

• This work was supported in parts by the Office of Naval Research grant (ONR- N00014-11-1-0885)