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Introduction: Non-binary LDPC Decoder on FPGAs

I We explore a complex error-correction signal processing algorithm:
. non-binary LDPC decoding (FFT-SPA)
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Fig. 1 Non-binary LDPC factor graph example and message-passing algorithm.

I We utilize a high-level synthesis tool to design an LDPC decoder
FPGA accelerator

I Vivado HLS allows:
. fast design space exploration via directive optimizations
. C/C++ code as input for generating an FPGA accelerator

Proposed LDPC Decoder Accelerator
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Fig. 2 Non-binary LDPC decoder base

solution block diagram.

I LDPC decoder characteristics
. 3-dimensions of computation:

I N×d/M×dc probability mass
functions (pmfs)

I 2m probabilities per pmf
I dv/dc pmf per node
I 2m is the Galois field dimension

. each dimension is defined over a
computation loop

I Applied LDPC computation:
. Fast Walsh-Hadamard transform

(fwht)
. Hadamard products

(vn/cn proc)
. Cyclic permutations

((de)permute)

I Under the hood transformations:
. 3 different nested loop structures:

I cn proc/vn proc: 3 loops triple-nested
I depermute/permute: 2 loops double-nested
I fwht: 5 loops triple-nested

. no computation performed directly on DRAM data
→ high bandwidth available but high latency of access

. data is moved to BRAM memory for computation at prologue
and to DRAM memory at epilogue
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Fig. 3 High-level architecture and die shot with 3 decoders P&R’d.

I Vivado HLS exports an accelerator design as an IP-XACT without
external I/O, clock interface or AXI4 data movers
. 1 DRAM and AXI-M controllers per SODIMM (2)
. 1 port on AXI-M controllers per accelerator instantiated (K)

Proposed Accelerator Optimizations

Table 2 Optimizations carried out for each solution.

Solutions
Optimizations I II III IV V VI

Unrolling X X X X
Pipelining X X

Array partitioning X X X

I We combined the following
optimizations to the 6 tested
solutions:
. loop unrolling (II, V)
. loop pipelining (III, VI)
. array partitioning (IV, V, VI)

I Opt. directives are not applied until code refactoring in some cases
I Every dimension where parallelism is exploited must be defined in its

particular loop, otherwise unrolling or pipelining becomes unbearable to
manage
. in fact, some optimization configurations do not complete the C-synthesis

I pipeline is targeted at II=1
I unrolling is complete

Experimental Results: Latency vs. LUTs utilization
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Fig. 4 Latency and clock frequency of operation of each LDPC accelerator solution for GF({22, 23, 24}).

I Applying the different optimizations we obtain a set of pareto points with
tradeoffs in frequency and LUTs utilization:
. providing more memory ports (higher bandwidth) is useful only if ALUs

consume data
. clock frequencies across the solutions can vary widely (160∼260) MHz
. pipelining has diminishing returns in latency reduction

(depermute/permute) for increasing Galois Field dimensions

Comparison with RTL-based Decoders

Table 1 Dec. throughput, FPGA util. and

freq. of operation.

Decoder m K
LUT FF BRAM DSP Thr. Clk

[%] [%] [%] [%] [Mbit/s] [MHz]

This work

2
1 14 7 0.5 0.5 1.17 250

14 80 35 6 6 14.54 219

3
1 21 9 0.9 0.9 0.95 250

6 81 34 5 5 4.81 210

4
1 30 13 2 2 0.66 216

3 73 32 5 5 1.85 201

Emden @ ISTCIIP’10

2 33.16

1004 N/A 13.22

8 1.56

Zhang @ TCS–I’11 4

1

48 (Slices) 41 N/A 9.3 N/A

Boutillon, @ TCS–I’13 6 19 6 1 N/A 2.95 61

Scheiber @ ICECS’13 1 14 (Slices) 21 N/A 13.4 122

Andrade @ ICASSP’14 8 85 (LEs) 62 7 1.1 163
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Fig. 5 Pareto and non-Pareto optimization points measured in

latency (µs) vs. LUTs utilization (%).

I LUT utilization grows with the Galois Field dimension

. Pareto points observed clearly illustrate the diminishing returns in the
latency for LUTs tradeoff

I We can settle for the optimized solution VI and increase the number K of
instantiated LDPC decoder accelerators on the high-level architecture

I RTL-based circuits still achieve higher performances but we reach quite close
even though HLS is being used

. approx. 50% dec. throughput

. but only for several K instantiated decoders

Conclusions

I We show that combining the correct optimizations we are able to reach
within 50% of RTL-based LDPC decoders

I Programming language is the same but programming model is different
. Code refactoring is still required
. Exploited parallelism dimensions are exposed in proper loop structures

I By instantiating the accelerators in a suitable high-level architecture we are
able to fit multiple accelerators further elevating the parallelism level
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