
Accelerating SpMV on FPGAs by Lossless
Nonzero Compression

Paul Grigoras

May 4, 2015

1 / 6

Motivation

Accelerate memory bound kernels – e.g. iterative SpMV

A = ... // read matrix once
for (...) // many iterations

q = ...
p = A * q // Sparse Matrix−Vector Multiplication
...

I common in scientific computing (e.g. Krylov iterative solvers)

Memory bound – must increase effective DRAM bandwidth

I use compression/decompression
I to improve overall performance (on FPGAs) must

1. use only spare resources (BRAMs)
2. decompress at processing pipeline rate

2 / 6

Motivation

Accelerate memory bound kernels – e.g. iterative SpMV

A = ... // read matrix once
for (...) // many iterations

q = ...
p = A * q // Sparse Matrix−Vector Multiplication
...

I common in scientific computing (e.g. Krylov iterative solvers)

Memory bound – must increase effective DRAM bandwidth

I use compression/decompression
I to improve overall performance (on FPGAs) must

1. use only spare resources (BRAMs)
2. decompress at processing pipeline rate

2 / 6

Motivation

Accelerate memory bound kernels – e.g. iterative SpMV

A = ... // read matrix once
for (...) // many iterations

q = ...
p = A * q // Sparse Matrix−Vector Multiplication
...

I common in scientific computing (e.g. Krylov iterative solvers)

Memory bound – must increase effective DRAM bandwidth

I use compression/decompression

I to improve overall performance (on FPGAs) must

1. use only spare resources (BRAMs)
2. decompress at processing pipeline rate

2 / 6

Motivation

Accelerate memory bound kernels – e.g. iterative SpMV

A = ... // read matrix once
for (...) // many iterations

q = ...
p = A * q // Sparse Matrix−Vector Multiplication
...

I common in scientific computing (e.g. Krylov iterative solvers)

Memory bound – must increase effective DRAM bandwidth

I use compression/decompression
I to improve overall performance (on FPGAs) must

1. use only spare resources (BRAMs)
2. decompress at processing pipeline rate

2 / 6

Approach

Overview

1. compress sparse matrix values on CPU
I one-off operation – matrix reused for many iterations
I use the Bounded CSRVI Format

2. store to FPGA accelerator DRAM

3. decompress at runtime

Bounded CSRVI

I Encode only k most frequent values
I can control resource usage

I Store decoding table in BRAM
I use it at runtime for decompression
I decoding operation is BRAM look-up
I produces one value per clock cycle

3 / 6

Approach

Overview

1. compress sparse matrix values on CPU
I one-off operation – matrix reused for many iterations
I use the Bounded CSRVI Format

2. store to FPGA accelerator DRAM

3. decompress at runtime

Bounded CSRVI

I Encode only k most frequent values
I can control resource usage

I Store decoding table in BRAM
I use it at runtime for decompression
I decoding operation is BRAM look-up
I produces one value per clock cycle

3 / 6

Example

Figure 1 : rajat30 – circuit simulation, 640K x 640K, 6M nnzs

Spare Resources: 8 BRAMs

Unique Values (BRAMS)

CSR
k = 0

BCSRVI
k in [0, 2^32]

CSRVI
k = 2^32

Best

Insufficient Spare ResourcesInsufficient Compression

C
o
m

p
re

s
s
io

n
 R

a
ti

o

4 / 6

Results

I Test Systems
I Maxeler Maia (Stratix V) and Vectis (Virtex 6)

I Benchmark
I 86 UoF matrices, Order ∈ [767..4M], Nonzeros ∈ [6027..77M]

I Low resource usage for up to 12 bits
I enables use with multi-pipe SpMV kernels;
I decoding tables R/O – use dual read-port to reduce BRAM

I With k = 212 (4096 values, 12 bits)
I Support 21 more matrices than CSRVI
I Compression ratio over CSR: 1.16 – 1.79
I Resource usage over CSRVI: 2.65 – 1139X less BRAMs

5 / 6

Conclusion

I Simple approach works well on some matrices
I Can use spare resources for increased bandwidth
I Supports more matrices than CSRVI
I Often reduced storage over CSR (application specific)
I High throughput (one value per cycle)

Future work

I Apply to other iterative streaming applications?

Have a sparse matrix? Find me @poster session!

6 / 6

Conclusion

I Simple approach works well on some matrices
I Can use spare resources for increased bandwidth
I Supports more matrices than CSRVI
I Often reduced storage over CSR (application specific)
I High throughput (one value per cycle)

Future work

I Apply to other iterative streaming applications?

Have a sparse matrix? Find me @poster session!

6 / 6

Conclusion

I Simple approach works well on some matrices
I Can use spare resources for increased bandwidth
I Supports more matrices than CSRVI
I Often reduced storage over CSR (application specific)
I High throughput (one value per cycle)

Future work

I Apply to other iterative streaming applications?

Have a sparse matrix? Find me @poster session!

6 / 6

