

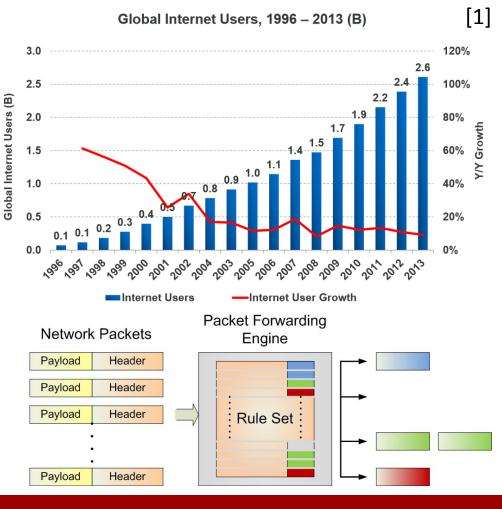
Enabling High Throughput and Virtualization for Traffic Classification on FPGA

Yun R. Qu, Viktor K. Prasanna Ming Hsieh Dept. of Electrical Engineering University of Southern California Los Angeles, CA 90089 Email: <u>yunqu@usc.edu</u> <u>prasanna@usc.edu</u>

University of Southern California

- Introduction
- Background
- Algorithms & Architecture
- Evaluation
- Conclusion

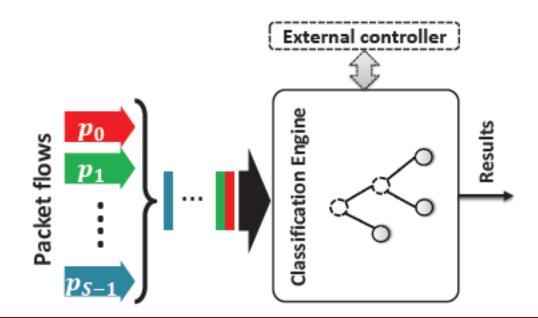
- Introduction
 - Routing devices, virtualization
- Background
- Algorithms & Architecture
- Evaluation
- Conclusion



4

Internet & Routing Devices

- Internet
 - Internet users ↑
 - network traffic ↑
- Gateway/router/switch
 - Packet forwarding
 - Access control
 - Packet/traffic classification


[1] http://www.kpcb.com/internet-trends

Trend: Virtual Machines

- Hardware Virtualization
 - Sharing expensive hardware devices
 - e.g., a virtualized classification engine
 - Require efficient dynamic updates !

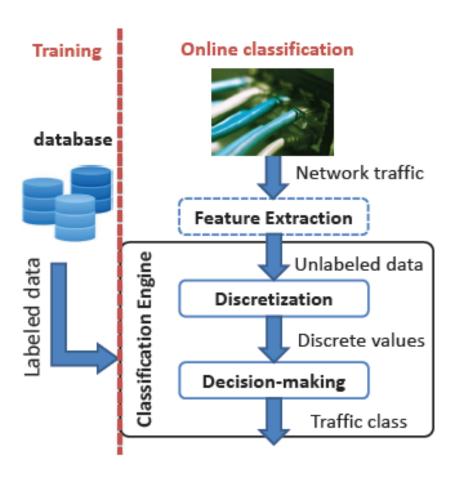
- Introduction
- Background
 - Traffic Classification
 - Related works
 - Motivations
- Algorithms & Architecture
- Evaluation
- Conclusion

Internet Traffic Classification

- Definition
 - Classifying traffic into application classes
 - Based on various features extracted from traffic
 - e.g., port numbers, packet length, etc.
 - Extract features from
 - Packet headers → accuracy issue
 - Deep packet inspection \rightarrow privacy issue
 - Major challenges
 - Performance (*e.g.*, throughput)
 - Hardware virtualization

Existing Approaches (1)

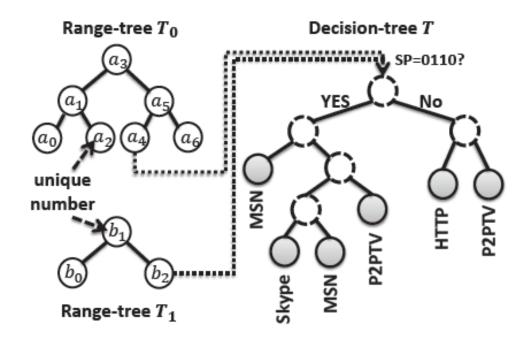
- Port-number-based
 - Transport-layer port number
 - *e.g.*, HTTP: 80, FTP control: 21
 - Dynamic port \rightarrow no longer reliable
- Deep Packet Inspection (DPI)
 - Slow, privacy issue, etc.
- Heuristic-based
 - Large training data, low accuracy



Existing Approaches (2)

- Machine Learning (ML)
 - Supervised / unsupervised
 - Extract features
 - Discretization
 - Into unique numbers
 - Decision-making
 - Determine traffic class
 - e.g., C4.5 decision-tree

Our focus

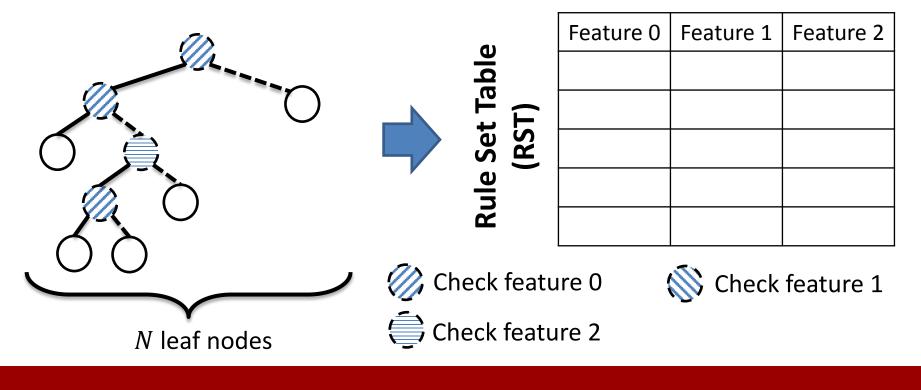


Existing Approaches (3)

- C4.5 decision-tree
 - Range-trees (discretization) + decision-tree (decision-making)
 - Not easy for dynamic updates

Motivation

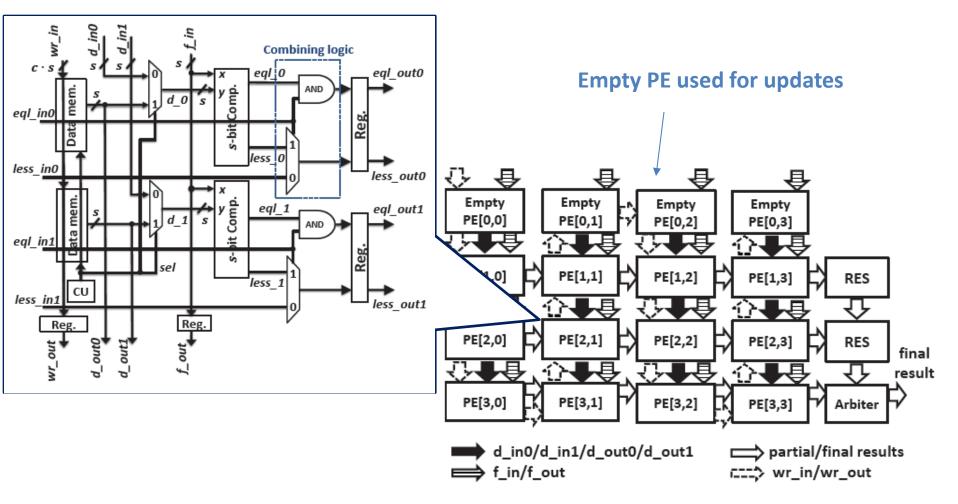
- Facilitate Dynamic Updates
 - Combine range-trees and decision-tree
 - Architectural support
- Explore Parallel Searches
 - Search multiple root-to-leaf paths in parallel
 - Search multiple features in parallel



- Introduction
- Background
- Algorithms & Architecture
 - Converting Tree to Rule Set Table (RST)
 - Modular Processing Element (PE)
 - 2-dimensional Pipelined Architecture
 - Efficient Dynamic Updates
- Evaluation
- Conclusion

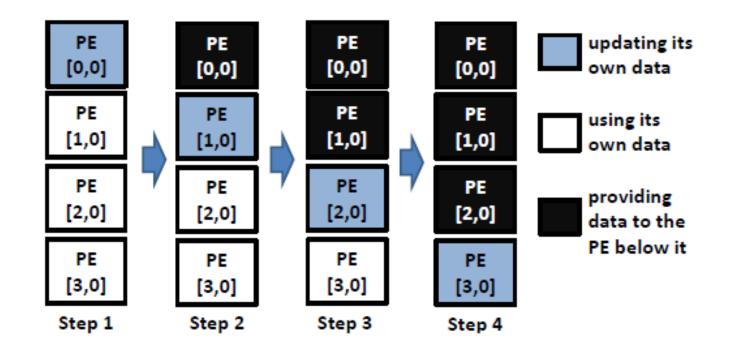
Converting Decision-tree

- Conversion techniques
 - Each root-to-leaf path \leftrightarrow a set of criteria
 - All the criteria of a path \rightarrow an entry of RST


Architecture (1)

- Modular Processing Element (PE)
 - Compare a stride of input against a stride of a range boundary
- 2-dimensional Pipelined Architecture
 - Propagate packet headers vertically (f_in / f_out)
 - Propagate partial / final results horizontally
- Snake-like Pipeline
 - Scan chain for writing data into data memory (wr_in / wr_out)

Architecture (2)



Virtualization

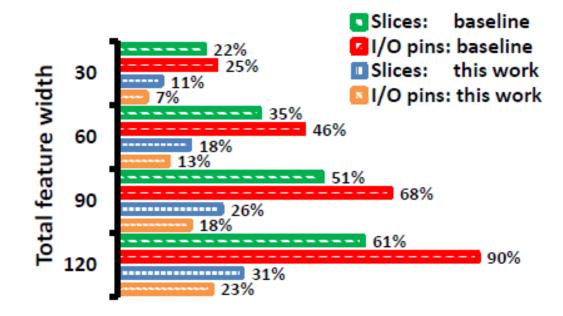
- Dynamic Updates
 - Tree update ↔ deletion, insertion, modification of rules on RST
 - e.g., a top-down ping-pong update on the first column

- Introduction
- Background
- Algorithms & Architecture
- Evaluation
 - Throughput, resource consumption
 - Comparison with prior works
- Conclusion

Experimental Setup

- FPGA
 - XC7VX1140t FLG1930 -2L
 - 1100 I/O, 218800 logic slices
 - 67 Mb BRAM, up to 17 Mb distributed RAM (dual-ported)
 - Verilog on Vivado Design Suite 2013.4
- Data Sets
 - Real decision-tree: 42-levels, 96 leaves
 - Similar synthetic trees
 - 6 features, 8 application classes

Throughput


- Parameterized Design
 - Best: each PE compares 3-bit strides against 2 boundaries
- Overall Throughput
 - Sustain 2 \times throughput of state-of-the-art

Parameters		State-of-the-art				This work			
Feature With		80	160	240	320	80	160	240	320
Max. no. of leaves	32	512	493	458	421	759	715	701	679
	64	437	425	401	374	705	682	653	621
	96	399	382	354	305	645	620	609	588

Resource Consumption

- No. of used logic slices, I/O pins, etc.
 - Set max. no. of leaves : 64
 - Baseline: two copies of the same architecture

Comparison

Approach		Algorithm	Platform	Throughput	
w/o dynamic updates	Este's	SVM	Dual Xeon, 2.6 GHz, 24 cores, 48 GB RAM	2 MCPS	
	Gringoli's	SVM	Dual Xeon, 2.6 GHz, 24 cores, 48 GB RAM	7 MCPS	
	Groleat's	SVM	Synthesized on Virtex-5	290 MCPS	
	Tong's	C4.5	Place-and-routed on Virtex-7	399 MCPS	
w/ dynamic updates	Jiang's	k-NN	Place-and-routed on Virtex-5	125 MCPS	
	This work	C4.5	Place-and-routed on Virtex-7	645 MCPS	

- Introduction
- Background
- Algorithms & Architecture
- Evaluation
- Conclusion

Conclusion

- Conclusion
 - Based on a conversion from decision-tree to RST
 - Parallel searching on FPGA
 - Achieve high performance & scalability
- Future work
 - Power, latency, etc.
 - Self-learning mechanism

Questions?

Thanks

<u>http://ganges.usc.edu</u>

University of Southern California