
MARC: A Many-Core Approach to
Reconfigurable Computing

Ilia Lebedev, Shaoyi Cheng, Austin Doupnik,

James Martin, Christopher Fletcher, Daniel Burke,

Mingjie Lin, and John Wawrzynek

05/01/2011 1

Landscape of Computing

2

MARC = Many-core Approach to Reconfigurable Computing

FPGA Computing

3

1. Tons of research

2. Not very portable

3. HDL programming

4. Domain knowledge

1. C-style HLP

2. Huge potential

3. Code fudging

4. Complementary to MARC

Arch. Constraint

P
e

rf
o

rm
a

n
c
e

Motivations
• HLS heavily studied

– Most studies focused on application-specific
customization

– Benchmarks tend to be small, not system-scale

• This study

– Tradeoff between customization and flexibility

– Realistic, relatively large-scale applications

• ParaLearn bio-inference problem

• Bayesian learning

4

We Ask:

• For a given class of computation-
intensive applications, is it
possible to build a reconfigurable
computing machine constrained
to resemble a many-core
computer, program it using a
high-level imperative language
such as C/C++, and yet still
achieve orders of magnitude in
performance gain relative to
conventional computing means?

5

Arch. Constraint

P
e

rf
o

rm
a

n
c
e

MARC: Overview

• C-Core (Control Processing Core)  MIPS

• A-Cores (Arithmetic Processing Cores)  data-path

• Parameterizable (bit-width, multi-threading, …)

• Objectives:

– Reducing hardware inefficiency between ASIC-
and FPGA-based computing platforms

– Effective RC but with low design effort 6

Schematic: MARC machine’s implementation

7

MARC: CAD Flow

8

Design Aspects of MARC System

• Many-Core Template

• Execution Model and Software Infrastructure

• Application-Specific Processing Core

• Host-MARC Interface

• Memory Organization

• Kernel Scheduler

• System Interconnect

9

A-Core Synthesis: CDFG

• IR  mixed control/data flow graph

10

A-Core Synthesis: CDFG

• IR  mixed control/data flow graph

11

A-Core Synthesis: Auto-Clustering and Module Selection

• Inputs: CDFG network + module library

• MARC synthesis = graph matching

– Resembles technology mapping in FPGA

• NP-complete

• Simulated annealing

– Moves

• Module selection

• Auto-clustering

– Cost function

• Aera, perf., timing,…

12

System Interconnect

• Exploit application-specific communication
patterns in the hardware system

13

Benchmarking

• General-purpose Bayesian computing

• Specific application for large-scale Bayesian
inference  ParaLearn

14

Bayesian Network Computing

• Artificial intelligence and signal processing

– Forward/backward algo., Viterbi algo., iterative
“turbo” decoding algo., Pearl’s belief
propagation algo., Kalman filter, certain FFT
algo., …

– Real-world applications: Early vision: stereo
and image restoration, DNA pyrosequencing:
sequencing--synthesis

15

• Representative
Felzenszwalb’06

• Known baseline

What is Bayesian Computing

• Bayesian network/belief propagation network

– Nodes  RVs, edges  dependency

– Joint probability,

– Point probability,

16

Sprinkler

Grass Wet Rain Gene Expression Data, Stanford Bio-X center

Case 1: Bayesian Computing Machine

• Challenges

– # of terms exponential with # of variables

– Accuracy  Floating point ops

– High/real-time performance  high throughput

17

Goal: quickly evaluating

• Baseline solution: BCM [FPGA2009]

– Stall-free memory accesses

– Deep pipelining

– Optimally scheduling processing nodes

Performance Comparison

18

BCM MARC

Bottom Line

• BCM: 6 months, two people

• MARC: 2 months, one people; reusable
19

Case 2: ParaLearn

20

FPGA Layouts after Placement and Routing

21

Performance Comparison

22

Performance Comparison (cont.)

23

• ParaLearn: 12 months, four people

• MARC: 3 months, two people; reusable

Conclusion

• MARC can effectively trade between design
effort and performance

• But, “bad” examples to be found …

– Little explicit parallelsim

– Complex memory access patterns

24

References
• High-Throughput Bayesian Computing Machine with Reconfigurable

Hardware, Mingjie Lin, Ilia Lebedev, and John Wawrzynek, the 2010
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Pages: 73-82

• ParaLearn: a massively parallel, scalable system for learning interaction
networks on FPGAs, Narges A., et. al., ICS '10 Proceedings of the 24th ACM
International Conference on Supercomputing

• MARC: A Many-Core Approach to Reconfigurable Computing, Lebedev, I.;
Shaoyi Cheng; Doupnik, A.; Martin, J.; Fletcher, C.; Burke, D.; Mingjie
Lin; Wawrzynek, J.; 2010 International Conference on Reconfigurable
Computing and FPGAs (ReConFig)

• Rethinking FPGA Computing with a Many-Core Approach, Mingjie L. and
Wawrzynek, J., The First Workshop on the Intersections of Computer
Architecture and Reconfigurable Logic (CARL 2010)

25

1/28/2010 26

Thanks!

Acknowledgements

• DARPA, Grant FA8650- 09-C-7907

• NIH, grant 1R01CA130826-01

• NSF Grants #0403427 & #0551739

• Berkeley Wireless Research Center (BWRC)

• Berkeley GateLib team (Greg Gibeling, Chris Fletcher, …)

CAD flow of synthesizing A-Cores

27

