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Landscape of Computing 
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MARC = Many-core Approach to Reconfigurable Computing 



FPGA Computing 
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1. Tons of research 

2. Not very portable 

3. HDL programming 

4. Domain knowledge  

1. C-style HLP 

2. Huge potential 

3. Code fudging 

4. Complementary to MARC  
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Motivations 
• HLS heavily studied 

– Most studies focused on application-specific 
customization 

– Benchmarks tend to be small, not system-scale  

• This study 

– Tradeoff between customization and flexibility 

– Realistic, relatively large-scale applications 

• ParaLearn bio-inference problem 

• Bayesian learning 
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We Ask: 

• For a given class of computation-
intensive applications, is it 
possible to build a reconfigurable 
computing machine constrained 
to resemble a many-core 
computer, program it using a 
high-level imperative language 
such as C/C++, and yet still 
achieve orders of magnitude in 
performance gain relative to 
conventional computing means? 
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MARC: Overview 

• C-Core (Control Processing Core)  MIPS 

• A-Cores (Arithmetic Processing Cores)  data-path 

• Parameterizable (bit-width, multi-threading, …) 

• Objectives: 

– Reducing hardware inefficiency between ASIC- 
and FPGA-based computing platforms 

– Effective RC but with low design effort 6 



Schematic: MARC machine’s implementation 

7 



MARC: CAD Flow 
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Design Aspects of MARC System 

• Many-Core Template 

• Execution Model and Software Infrastructure 

• Application-Specific Processing Core 

• Host-MARC Interface 

• Memory Organization 

• Kernel Scheduler 

• System Interconnect 
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A-Core Synthesis: CDFG 

• IR  mixed control/data flow graph 
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A-Core Synthesis: CDFG 

• IR  mixed control/data flow graph 
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A-Core Synthesis: Auto-Clustering and Module Selection 

• Inputs: CDFG network + module library  

• MARC synthesis = graph matching 

– Resembles technology mapping in FPGA 

• NP-complete 

• Simulated annealing 

– Moves 

• Module selection 

• Auto-clustering 

– Cost function 

• Aera, perf., timing,…  
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System Interconnect 

• Exploit application-specific communication 
patterns in the hardware system 
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Benchmarking 

• General-purpose Bayesian computing 

• Specific application for large-scale Bayesian 
inference  ParaLearn  
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Bayesian Network Computing 

• Artificial intelligence and signal processing 

– Forward/backward algo., Viterbi algo., iterative 
“turbo” decoding algo., Pearl’s belief 
propagation algo., Kalman filter, certain FFT 
algo., … 

– Real-world applications:  Early vision: stereo 
and image restoration, DNA pyrosequencing: 
sequencing--synthesis 
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• Representative 
Felzenszwalb’06 

 

• Known baseline 



What is Bayesian Computing 

• Bayesian network/belief propagation network 

– Nodes  RVs, edges  dependency 

– Joint probability, 

– Point probability, 
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Sprinkler 

Grass Wet Rain Gene Expression Data, Stanford Bio-X center 



Case 1: Bayesian Computing Machine 

• Challenges 

– # of terms exponential with # of variables 

– Accuracy  Floating point ops 

– High/real-time performance  high throughput 
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Goal: quickly evaluating 

 

 

• Baseline solution: BCM [FPGA2009] 

– Stall-free memory accesses 

– Deep pipelining 

– Optimally scheduling processing nodes 

 



Performance Comparison 
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BCM MARC 



Bottom Line 

• BCM: 6 months, two people 

• MARC: 2 months, one people; reusable 
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Case 2: ParaLearn  
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FPGA Layouts after Placement and Routing 
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Performance Comparison 
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Performance Comparison (cont.) 
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• ParaLearn: 12 months, four people 

• MARC: 3 months, two people; reusable 



Conclusion 

• MARC can effectively trade between design 
effort and performance 

 

• But, “bad” examples to be found … 

– Little explicit parallelsim 

– Complex memory access patterns 
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CAD flow of synthesizing A-Cores 
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