
Porting Performance across GPUs

and FPGAs

Deming Chen, ECE, University of Illinois

In collaboration with Alex Papakonstantinou1, Karthik Gururaj2,
John Stratton1, Jason Cong2, Wen-Mei Hwu1

1: ECE Department at University of Illinois, Urbana–Champaign

2: CS Department at University of California, Los-Angeles

Outline

 Motivation

 FCUDA Objectives

 FCUDA Flow

 Future Direction – FPGA in OpenCL

 Conclusions

2

Motivation

 The shift towards parallel computing has emphasized the

potential of devices that can offer massive compute parallelism:

 GPUs (NVIDIA, AMD-ATI)

 FPGAs (Xilinx, Altera)

 Many-core processors (IBM Cell, Tilera TILE64, Intel 48-core SCC)

 High performance computing is moving towards

 heterogeneous systems that combine

 Multi-core CPUs with

 Accelerators to extract more parallelism

 at a lower power footprint

 Other examples

 Fusion: CPU+GPU on the same die

 Stellarton: CPU+FPGA in the same package

 Convey HC 1: CPU+Multi-FPGA sharing memory

CPU

FPGA GPU

PCI / FSB / HT

3

Computing on FPGAs - Advantages

 Versatile mapping of application-specific parallelism:

 Coarse & fine grained parallelism

 Data and task parallelism

 Flexible pipelining schemes

 Low power high-performance computation

 High computational density per Watt compared to CPUs and GPUs

 High reliability due to lower operating temperatures

 Deployment flexibility

 Deployed as CPU accelerator (co-processor) or

 Autonomous System on Chip implementation

4

Computing on FPGAs – Challenges

 FPGA programming abstraction is low

 Knowledge on hardware design and device details required (e.g. in

VHDL, Verilog)

 Time consuming synthesis flow increases complexity of identifying

performance-optimal implementation

 Interdependencies between cycles, frequency and concurrency

 Identifying optimal mapping of application parallelism onto hardware is

not trivial

 High-level synthesis (HLS) tools help raise the abstraction, but

 Parallelism extraction may be limited by programming model

 May not offer evaluation and selection of best parallelism extraction for

performance

5

FCUDA: CUDA-to-FPGA

 Use CUDA code in tandem with HLS to:

 enable high abstraction FPGA programming

 leverage different types of parallelism during hardware generation

 CUDA: C-based parallel programming model for GPUs

 Concise expression of coarse grained parallelism

 Large amount of existing applications

 Good model for providing common programming interface for kernel

acceleration on GPUs & FPGAs

 AutoPilot: Advanced HLS tool (from AutoESL, now Xilinx)

 Automatic fine-grained parallelism extraction

 Annotation-driven coarse-grained parallelism extraction

CUDA C

6

FCUDA Flow

FPGA

Bitfile

HLS & Logic

Synthesis

AutoPilot

C Code

FCUDA

Translation

Annotated

CUDA

FCUDA

Annotation

CUDA

Code Programmer annotates CUDA code with

pragmas to guide FCUDA translation

Translate CUDA coarse grained parallelism

into parallel AutoPilot C tasks

Transform parallel C tasks into parallel RTL

cores (AutoPilot) and synthesize RTL onto

FPGA reconfigurable fabric (Xilinx toolset)

7

CUDA Programming Model

CUDA Kernel

Grid Block

(0,0)

Block

(1,0)

Block

(0,1)

Block

(1,1)

Thread-Block (0,1)

Thread

(0,0)

Thread

(1,0)

Thread

(2,0)

Thread

(0,1)

Thread

(1,1)

Thread

(2,1)

GPU

SM SM SM

SM SM SM

Streaming Multiprocessor

Shared Memory

SP

SP

SP

SP

SP

SP

SFU SFU

Application Parallelism Architecture Parallelism

 Threads are clustered into thread-blocks

 Each thread-block is assigned to one Streaming Multiprocessor (SM)

 Each thread runs on a Streaming Processor (SP)

8

 Coarse-grained parallelism is represented at the function level
 Each function is transformed into a custom core*

 Functions annotated with the PARALLEL pragma are transformed into

concurrently executing cores

 Non-annotated functions are transformed into sequentially executing cores

(represented by dependence edges)

AutoPilot Programming Model

AutoPilot Kernel

#pragma PARALLEL

Function_2()

Function_3()

Function_4()

Function_1()

Function_5()

#pragma UNROLL

FPGA
Core 1

Core 2 Core 3 Core 4

Core 5Thread 1 Thread 2

Dependence

edge

Application Parallelism Architecture Parallelism

 Core := allocated set of

resources required to

execute corresponding

procedure computation

9

FCUDA Implementation Overview

 The FCUDA translation consists of two main stages:

 FCUDA Front-End stage:

 Convert logical threads into explicit thread-loops

 Based on the MCUDA framework (John Stratton et al., “MCUDA: An efficient

implementation of CUDA kernels on multi-core CPUs”)

 FCUDA Back-End stage:

 Extract coarse grained parallelism at the thread-block level

 Implemented with the Cetus compiler infrastructure

 S. Lee et al., “Cetus - An extensible compiler infrastructure for source-to-

source transformation,” 2003.

CUDA

sync

thread-loop

FCUDA Back-End

thread-block task function

FCUDA Front-End

.
. . .

core storage core sync task

10

Front-End Transformations

 Serialize logical threads in thread-loops

 Thread-blocks are a good granularity for coarse-

level parallelism extraction on the FPGA

 Handle intra-block synchronization at:

 CUDA thread-block sync statements

 Annotated FCUDA task boundaries

CUDA

sync

thread-loop

. . .

. . .

AS(ty, tx) = A[a + wA * ty + tx];

BS(ty, tx) = B[b + wB * ty + tx];

__syncthreads();

for (k = 0; k < BLOCK_SIZE; ++k)

 Csub += AS(ty, k) * BS(k, tx);

Input CUDA code
for (ty=0; ty<blockDim.y; ++ty)

 for (tx=0; tx<blockDim.x; ++tx) {

 AS(ty, tx) = A[a + wA * ty + tx];

 BS(ty, tx) = B[b + wB * ty + tx];

} }

for (ty=0; ty<blockDim.y; ++ty)

 for (tx=0; tx<blockDim.x; ++tx) {

 for (k = 0; k < BLOCK_SIZE; ++k)

 Csub += AS(ty, k) * BS(k, tx);

} }

}

}

thread-loops

11

Back-End Overview

 Generate task functions based on FCUDA

 Leverage task synchronization and thread-block scheduling

 Manage data storage allocation and data communication between

generated functions

task function

. . .

core storage core sync task

12

Task Generation

 Kernel decomposition into compute & data-transfer tasks

 Aggregate off-chip transfers into coalesced blocks

 Transform data transfer blocks into DMA bursts

 Coarse Grain Parallelism Exposure

 Threadblock Core (or PE)

read

compute

write

FPGA core

Core-private

BRAM thread-block kernel tasks

CUDA

Kernel

Task

annotation

Frontend:

Thread-loop

generation

Backend:

Task generation

Backend:

Memory allocation

13

Task Generation Code Example

 Identify FCUDA annotated tasks and generate task functions for

them

 Analyze data accesses within task and pass necessary variables

through task function parameters list

 Identify off-chip and on-chip allocated variables

 Replace FCUDA annotated task code in kernel with task function call

#pragma FCUDA TRANSFER begin

 for (<thread-loop>)

 As[]=A[];

 Bs[]=B[];

#pragma FCUDA TRANSFER end

Front-End generated code

. . .

#pragma FCUDA COMPUTE begin

 for (<thread-loop>)

 for (k=0; k<BLOCK_SIZE; ++k)

 Csub += As(ty,k) * Bs(k, tx);

#pragma FCUDA COMPUTE end

void fetch (volatile int* A, volatile int* B, int As[],

 int Bs[], …) { … }

void compute (int Csub[], int As[], int Bs[],

 dim3 blockDim, …) { … }

void matrixMul (volatile int* A, volatile int* B, …) {

 …

 fetch (A, B, As, Bs, …);

 compute (Csub, As, Bs, blockDim, …);

 … }

14

Task Synchronization

 Pragma-driven source code transformation

 Sequential: temporally interleave compute & transfer

 Ping-Pong: temporally overlap compute & transfer

 Higher BRAM cost

 Interconnect

Logic

 Interconnect

Logic

BRAM

Block

DMA

Controller

Compute

Logic

BRAM

Block A

DMA

Controller

Compute

Logic

BRAM

Block B

a) Simple Scheme b) Ping-pong Scheme

Active connection

Idle connection

Sequential scheme

Ping-Pong scheme

DMA comp DMA comp
BRAM

BRAM

A

BRAM

B

DMA comp DMA comp

comp DMA comp DMA

time

time

15

Task Synchronization Code Example

 Statically schedule the execution of thread-blocks based on

parallelism info provided in programmer-specified annotation

 Replicate task function calls according to required concurrency

 Annotate concurrent task function calls with AutoPilot PARALLEL

pragmas

 Update stride of loop over thread-block grid

#pragma FCUDA COMPUTE cores=2

#pragma FCUDA BLOCKS start_x=0 end_x=63

#pragma FCUDA SYNC type=simple

void matrixMul (…) {

 for (by=0; by<gridDim.y; ++by) {

 for (bx=0; bx<gridDim.x; ++bx) {

 …

} } }

void matrixMul (int * C, int * A, int * B, …) {

 for (by=0; by<gridDim.y; ++by) {

 for (bx=0; bx<gridDim.x; bx +=2) {

 …

 #pragma AUTOPILOT REGION begin

 #pragma AUTOPILOT PARALLEL

 matrixMul_compute(Csub1, As1, Bs1, …);

 matrixMul_compute(Csub2, As2, Bs2, …);

 #pragma AUTOPILOT REGION end

 …

} } }

16

CUDA Memory Spaces Mapping

 CUDA

 Global

 (all-thread accessible)

 Shared

(per threadblock accessible)

 Constant

 (All-thread read only)

 Registers

 (per thread accessible)

 FPGA

• DRAM

 (all-core accessible)

• BRAM

 (per core accessible)

• Registers

 (per-FU accessible)

17

Data Transfer Code Example

 In data transfer task functions, merge single off-chip accesses into

DMA bursts

 DMA bursts are inferred by memcpy calls in AutoPilot

 Compute array offsets and lengths

 Arrange bursts for multiple partial rows

 In compute task functions, replace direct accesses to off-chip

memory arrays by on-chip memory-block accesses

 Update task function parameter list

 Currently, this transformation is based on info provided in the annotation

inserted by the programmer

#pragma FCUDA TRANSFER begin

 for (<thread-loop>)

 As[]=A[];

 Bs[]=B[];

#pragma FCUDA TRANSFER end

void fetch (volatile int* A, volatile int* B, int As[],

 int Bs[], …) {

 for (<# rows >)

 memcpy(As+tIdx.y, A+a+tIdx.y*wA, bDim.x*sizeof(int));

 memcpy(Bs+tIdx.y, B+b+tIdx.y*wB, bDim.x*sizeof(int));

}

18

CUDA Kernels

Kernel Data Dimensions Description

Matrix Multiply

(matmul)
4096x4096

Computes multiplication of two

arrays (used in many applications)

Coulombic Potential

(cp)

4000 atoms,

512x512 grid

Computation of electrostatic

potential in a volume containing

charged atoms

Fast Walsh Transform

(fwt1) 32 Million element

vector

Walsh-Hadamard transform is a

generalized Fourier transformation

used in various engineering

applications
Fast Walsh Transform

(fwt2)

Discreet Wavelet Transform

(dwt)
120K points

1D DWT for Haar wavelets and

signals

19

Parallelism Impact on FPGA performance

 maxP: maximum PE (core) count – total PEs

 maxPxU: maximum (PE*Unroll) – total threads

 maxPxUxM: maximum PE*Unroll*Partition – balanced

5/3/2011 20

0

1

2

3

4

5

6

7

8

mm_32 mm_16 fwt2_32 fwt2_16 fwt1_32 fwt1_16 cp_32 cp_16 dwt_32 dwt_16

L
a

te
n

cy
 (

n
o

rm
a

li
ze

d
 o

v
er

 m
a

x
P

)

maxP maxPxU maxPxUxM

FPGA vs. GPU – Latency

 Nvidia G92 (65nm)

 Xilinx SX240T Virtex-5 (65nm)

21

0

0.5

1

1.5

2

2.5

3

3.5

mm_32 mm_16 fwt2_32 fwt2_16 fwt1_32 fwt1_16 cp_32 cp_16 dwt_32 dwt_16

L
a

te
n

cy
 (

n
o
rm

a
li

ze
d

 o
v

er
 G

P
U

) GPU

FPGA (16GB/s)

FPGA (64GB/s)

Introducing OpenCL

 Open Computing Language (Open Standard)

 Royalty free

 Khronos OpenCL working group (driven by industry)

 Provide single programming model for heterogeneous

devices

 Support all compute resources in system

 Provide portability

 Exploit data and task parallelism

 C99 subset

 Missing Function pointers, recursion, variable length arrays, etc.

22

Data-Level Parallelism

 Hierarchical N-dimensional compute domain (N=1,2 or 3)

 Work-item

 Work group

 Platform model

 1 Host

 1 or more devices

23

Memory Model & Host-Device IF

 Multiple address spaces

 Command queues

 Data transfers

 Kernel invocations

 In-order execution

 Out of order exec.

24

OpenCL Support - Two Main Tasks

 Static compilation

 FOpenCL flow

 Run time API implementation

 Support pre-compiled bitfiles

 Due to lengthy synthesis runtimes

 Implement queues for

 Data transfer commands

 Kernel invocation commands

 Download a new bitfile

 Use previously downloaded bitfile

 Use embedded hard CPUs, e.g., handle sequential computation

25

Challenges – Flow and Command Queue

 FOpenCL

 OpenCL can use a single kernel to target different devices

 Although it is portable, performance may not exploit the maximum

potential of every platform

 For FPGA, we will explore the following

 Data structure adjustment targeting FPGA specific features

 Computation adjustment to take advantage of customization

capability of FPGA

 Runtime API implementation

 Need to work with low-level FPGA device drivers

 Coordinate commands between kernels on FPGA fabric and sequential

computation on embedded hard CPU

26

Challenges – System Level Issues

 Performance Driven Kernel Mapping

 In heterogeneous systems with multiple accelerators

 Different platforms, e.g., FPGA & GPU devices

 Different types, e.g., different FPGA devices

 Analyze kernel compute & data patterns to find good workload

partitioning

 Multi-FPGA application acceleration

 Scenario 1:

 Map a single kernel to multiple FPGA devices

 Scenario 2:

 Map kernels connected through data streaming to different devices

and eliminate traffic to global memory

 27

Conclusions

 FPGAs are becoming increasingly attractive in
heterogeneous multi-processor environments
 FPGAs can provide application specific parallelism with high

computational density per Watt

 However, the devil is in programming the thing

 FCUDA aims to contribute in bridging compilation and
high-level-synthesis techniques
 overcoming the hurdle of programmability

 easy parallelism mapping on the reconfigurable fabric at high
abstraction

 efficient extraction of different levels of parallelism in applications

 enabling common frontend language for heterogeneous platforms

 initial results promising

 Support FPGA in OpenCL

28

Acknowledgement

 We acknowledge the support of the following funding
agencies

 GSRC

 NSF

Thank You Very Much

29

