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Motivation 

 The shift towards parallel computing has emphasized the 

potential of devices that can offer massive compute parallelism: 

 GPUs (NVIDIA, AMD-ATI) 

 FPGAs (Xilinx, Altera) 

 Many-core processors (IBM Cell, Tilera TILE64, Intel 48-core SCC) 

 High performance computing is moving towards  

 heterogeneous systems that combine 

 Multi-core CPUs with  

 Accelerators to extract more parallelism  

 at a lower power footprint 

 Other examples 

 Fusion: CPU+GPU on the same die 

 Stellarton: CPU+FPGA in the same package 

 Convey HC 1: CPU+Multi-FPGA sharing memory  

 

CPU 

FPGA GPU 

PCI / FSB / HT 
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Computing on FPGAs - Advantages 

 Versatile mapping of application-specific parallelism: 

 Coarse & fine grained parallelism 

 Data and task parallelism 

 Flexible pipelining schemes 
 

 Low power high-performance computation 

 High computational density per Watt compared to CPUs and GPUs 

 High reliability due to lower operating temperatures 
 

 Deployment flexibility   

 Deployed as CPU accelerator (co-processor) or 

 Autonomous System on Chip implementation  
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Computing on FPGAs – Challenges 

 FPGA programming abstraction is low 

 Knowledge on hardware design and device details required (e.g. in 

VHDL, Verilog) 

 

 Time consuming synthesis flow increases complexity of identifying 

performance-optimal implementation 

 Interdependencies between cycles, frequency and concurrency  

 Identifying optimal mapping of application parallelism onto hardware is 

not trivial 

 

 High-level synthesis (HLS) tools help raise the abstraction, but  

 Parallelism extraction may be limited by programming model 

 May not offer evaluation and selection of best parallelism extraction for 

performance 
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FCUDA: CUDA-to-FPGA 

 Use CUDA code in tandem with HLS to: 

 enable high abstraction FPGA programming 

 leverage different types of parallelism during hardware generation 
 

 CUDA: C-based parallel programming model for GPUs 

 Concise expression of coarse grained parallelism 

 Large amount of existing applications 

 Good model for providing common programming interface for kernel 

acceleration on GPUs & FPGAs 
 

 AutoPilot: Advanced HLS tool (from AutoESL, now Xilinx) 

 Automatic fine-grained parallelism extraction 

 Annotation-driven coarse-grained parallelism extraction 

CUDA C 
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FCUDA Flow 

 

FPGA 

Bitfile 

HLS & Logic 

Synthesis 

AutoPilot 

C Code 

FCUDA 

Translation 

Annotated 

CUDA 

FCUDA 

Annotation 

CUDA 

Code Programmer annotates CUDA code with 

pragmas to guide FCUDA translation 

Translate CUDA coarse grained parallelism 

into parallel AutoPilot C tasks 

Transform parallel C tasks into parallel RTL 

cores (AutoPilot) and synthesize RTL onto 

FPGA reconfigurable fabric (Xilinx toolset) 
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CUDA Programming Model 

CUDA Kernel
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Application Parallelism Architecture Parallelism 

 Threads are clustered into thread-blocks 

 Each thread-block is assigned to one Streaming Multiprocessor (SM) 

 Each thread runs on a Streaming Processor (SP) 
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 Coarse-grained parallelism is represented at the function level 
 Each function is transformed into a custom core*  

 Functions annotated with the PARALLEL pragma are transformed into 

concurrently executing cores 

 Non-annotated functions are transformed into sequentially executing cores 

(represented by dependence edges) 

AutoPilot Programming Model 

AutoPilot Kernel

#pragma PARALLEL

Function_2()

Function_3()

Function_4()

Function_1()

Function_5()

#pragma UNROLL

FPGA
Core 1

Core 2 Core 3 Core 4

Core 5Thread 1 Thread 2

Dependence 

edge

Application Parallelism Architecture Parallelism 

 Core := allocated set of 

resources required to 

execute corresponding 

procedure computation 
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FCUDA Implementation Overview 

 The FCUDA translation consists of two main stages: 

 FCUDA Front-End stage: 

 Convert logical threads into explicit thread-loops  

 Based on the MCUDA framework ( John Stratton et al., “MCUDA: An efficient 

implementation of CUDA kernels on multi-core CPUs”) 

 FCUDA Back-End stage: 

 Extract coarse grained parallelism at the thread-block level 

 Implemented with the Cetus compiler infrastructure  

 S. Lee et al., “Cetus - An extensible compiler infrastructure for source-to-

source transformation,” 2003. 

CUDA

sync

thread-loop

FCUDA Back-End

thread-block task function

FCUDA Front-End

. . . . . .
. . .

core storage core sync task
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Front-End Transformations 

 Serialize logical threads in thread-loops  

 Thread-blocks are a good granularity for coarse-

level parallelism extraction on the FPGA 

 Handle intra-block synchronization at: 

 CUDA thread-block sync statements 

 Annotated FCUDA task boundaries 

CUDA

sync

thread-loop

. . .

. . .

AS(ty, tx) = A[a + wA * ty + tx]; 

BS(ty, tx) = B[b + wB * ty + tx]; 
 

__syncthreads(); 
 

for ( k = 0; k < BLOCK_SIZE; ++k) 

  Csub += AS(ty, k) * BS(k, tx); 

Input CUDA code 
for (ty=0; ty<blockDim.y; ++ty)  

  for (tx=0; tx<blockDim.x; ++tx) { 

     AS(ty, tx) = A[a + wA * ty + tx]; 

     BS(ty, tx) = B[b + wB * ty + tx]; 

} } 

 

for (ty=0; ty<blockDim.y; ++ty) 

  for (tx=0; tx<blockDim.x; ++tx) { 

     for ( k = 0; k < BLOCK_SIZE; ++k) 

        Csub += AS(ty, k) * BS(k, tx); 

} } 

} 
 

 
} 

thread-loops 
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Back-End Overview 

 Generate task functions based on FCUDA 

 

 Leverage task synchronization and thread-block scheduling 

 

 Manage data storage allocation and data communication between 

generated functions 

task function

. . .

core storage core sync task
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Task Generation 

 Kernel decomposition into compute & data-transfer tasks 

 Aggregate off-chip transfers into coalesced blocks 

 Transform data transfer blocks into DMA bursts 

 Coarse Grain Parallelism Exposure 

 Threadblock  Core (or PE) 

 

read

compute

write

FPGA  core 

Core-private 

BRAM thread-block kernel tasks 

CUDA 

Kernel 

Task 

annotation 

Frontend: 

Thread-loop 

generation 

Backend: 

Task generation 

Backend: 

Memory allocation 
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Task Generation Code Example 

 Identify FCUDA annotated tasks and generate task functions for 

them 

 Analyze data accesses within task and pass necessary variables 

through task function parameters list 

 Identify off-chip and on-chip allocated variables 

 Replace FCUDA annotated task code in kernel with task function call 

#pragma FCUDA TRANSFER begin 

   for ( <thread-loop> )  

      As[ ]=A[ ];   

      Bs[ ]=B[ ]; 

#pragma FCUDA TRANSFER end 

Front-End generated code 

. . . 

#pragma FCUDA COMPUTE begin 

   for ( <thread-loop> )  

      for (k=0; k<BLOCK_SIZE; ++k) 

         Csub += As(ty,k) * Bs(k, tx); 

#pragma FCUDA COMPUTE end 

void fetch (volatile int* A, volatile int* B, int As[ ],  

                 int Bs[ ], …) { … } 

 

void compute (int Csub[ ], int As[ ], int Bs[ ],  

                         dim3 blockDim, … ) { … } 
 

void matrixMul (volatile int* A, volatile int* B, … )  {  

   … 

   fetch (A, B, As, Bs, …); 

   compute (Csub, As, Bs, blockDim, …); 

   …   } 
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Task Synchronization 

 Pragma-driven source code transformation 

 Sequential: temporally interleave compute & transfer 

 Ping-Pong: temporally overlap compute & transfer 

 Higher BRAM cost  

 Interconnect

Logic

  Interconnect

Logic

BRAM 

Block

DMA 

Controller

Compute 

Logic

BRAM 

Block A

DMA 

Controller

Compute 

Logic

BRAM 

Block B

a) Simple Scheme          b) Ping-pong Scheme

Active connection

Idle connection

Sequential scheme 

Ping-Pong scheme 

DMA comp DMA comp 
BRAM 

BRAM 

A 

BRAM 

B 

DMA comp DMA comp 

comp DMA comp DMA 

time 

time 
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Task Synchronization Code Example 

 Statically schedule the execution of thread-blocks based on 

parallelism info provided in programmer-specified annotation 

 Replicate task function calls according to required concurrency 

 Annotate concurrent task function calls with AutoPilot PARALLEL 

pragmas 

 Update stride of loop over thread-block grid 

#pragma FCUDA COMPUTE cores=2 

#pragma FCUDA BLOCKS start_x=0 end_x=63 

#pragma FCUDA SYNC type=simple 

void matrixMul (…) { 

  

 for (by=0; by<gridDim.y; ++by) { 

   for (bx=0; bx<gridDim.x; ++bx) { 

      … 

} } } 

void matrixMul (int * C, int * A, int * B, …) { 

 for (by=0; by<gridDim.y; ++by) { 

   for (bx=0; bx<gridDim.x; bx +=2) { 

     … 

     #pragma AUTOPILOT REGION begin 

     #pragma AUTOPILOT PARALLEL 

      matrixMul_compute(Csub1, As1, Bs1, … ); 

      matrixMul_compute(Csub2, As2, Bs2, … ); 

      #pragma AUTOPILOT REGION end 

    … 

} } } 
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CUDA Memory Spaces Mapping 

   CUDA 

 Global  

 (all-thread accessible) 

 Shared 

(per threadblock accessible) 

 Constant 

 (All-thread read only) 

 Registers 

 (per thread accessible) 

   FPGA 

• DRAM 

 (all-core accessible) 

• BRAM 

 (per core accessible) 

• Registers 

 (per-FU accessible) 
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Data Transfer Code Example 

 In data transfer task functions, merge single off-chip accesses into 

DMA bursts 

 DMA bursts are inferred by memcpy calls in AutoPilot 

 Compute array offsets and lengths 

 Arrange bursts for multiple partial rows 

 In compute task functions, replace direct accesses to off-chip 

memory arrays by on-chip memory-block accesses 

 Update task function parameter list 

 Currently, this transformation is based on info provided in the annotation 

inserted by the programmer 

#pragma FCUDA TRANSFER begin 

   for ( <thread-loop> )  

      As[ ]=A[ ];   

      Bs[ ]=B[ ]; 

#pragma FCUDA TRANSFER end 

void fetch (volatile int* A, volatile int* B, int As[ ],  

                 int Bs[ ], … ) {   

  for (<# rows > ) 

    memcpy(As+tIdx.y, A+a+tIdx.y*wA, bDim.x*sizeof(int)); 

    memcpy(Bs+tIdx.y, B+b+tIdx.y*wB, bDim.x*sizeof(int));   

} 
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CUDA Kernels 

Kernel Data Dimensions Description 

Matrix Multiply  

(matmul) 
4096x4096 

Computes multiplication of two 

arrays (used in many applications) 

Coulombic Potential  

(cp) 

4000 atoms,  

512x512 grid 

Computation of electrostatic 

potential in a volume containing 

charged atoms 

Fast Walsh Transform 

(fwt1) 32 Million element 

vector 

Walsh-Hadamard transform is a 

generalized Fourier transformation 

used in various engineering 

applications 
Fast Walsh Transform 

(fwt2) 

Discreet Wavelet Transform 

(dwt) 
120K points 

1D DWT for Haar wavelets and 

signals 
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Parallelism Impact on FPGA performance 

 maxP: maximum PE (core) count – total PEs 

 maxPxU: maximum (PE*Unroll) – total threads 

 maxPxUxM: maximum PE*Unroll*Partition – balanced  
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FPGA vs. GPU – Latency 

 Nvidia G92 (65nm) 

 Xilinx SX240T Virtex-5 (65nm) 
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Introducing OpenCL  

 Open Computing Language (Open Standard) 

 Royalty free 

 Khronos OpenCL working group (driven by industry) 

 Provide single programming model for heterogeneous 

devices 

 Support all compute resources in system 

 Provide portability 

 Exploit data and task parallelism 

 C99 subset 

 Missing Function pointers, recursion, variable length arrays, etc. 
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Data-Level Parallelism 

 Hierarchical N-dimensional compute domain (N=1,2 or 3) 

 Work-item 

 Work group 

 

 

 

 

 

 

 Platform model 

 1 Host 

 1 or more devices 
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Memory Model & Host-Device IF 

 Multiple address spaces 

 

 Command queues 

 Data transfers 

 Kernel invocations 

 In-order execution 

 Out of order exec. 
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OpenCL Support - Two Main Tasks  

 
 Static compilation 

 FOpenCL flow 

 Run time API implementation 

 Support pre-compiled bitfiles  

 Due to lengthy synthesis runtimes 

 Implement queues for  

 Data transfer commands 

 Kernel invocation commands 

 Download a new bitfile 

 Use previously downloaded bitfile 

 Use embedded hard CPUs, e.g., handle sequential computation  
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Challenges – Flow and Command Queue 

 FOpenCL 

 OpenCL can use a single kernel to target different devices 

 Although it is portable, performance may not exploit the maximum 

potential of every platform 

 For FPGA, we will explore the following 

 Data structure adjustment targeting FPGA specific features 

 Computation adjustment to take advantage of customization 

capability of FPGA 

 

 Runtime API implementation 

 Need to work with low-level FPGA device drivers 

 Coordinate commands between kernels on FPGA fabric and sequential 

computation on embedded hard CPU 
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Challenges – System Level Issues 

 Performance Driven Kernel Mapping 

 In heterogeneous systems with multiple accelerators 

 Different platforms, e.g., FPGA & GPU devices 

 Different types, e.g., different FPGA devices 

 Analyze kernel compute & data patterns to find good workload 

partitioning 

 

 Multi-FPGA application acceleration 

 Scenario 1:  

 Map a single kernel to multiple FPGA devices 

 Scenario 2:  

 Map kernels connected through data streaming to different devices 

and eliminate traffic to global memory 
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Conclusions 

 FPGAs are becoming increasingly attractive in 
heterogeneous multi-processor environments 
 FPGAs can provide application specific parallelism with high 

computational density per Watt 

 However, the devil is in programming the thing 

 

 FCUDA aims to contribute in bridging compilation and 
high-level-synthesis techniques 
 overcoming the hurdle of programmability 

 easy parallelism mapping on the reconfigurable fabric at high 
abstraction 

 efficient extraction of different levels of parallelism in applications 

 enabling common frontend language for heterogeneous platforms 

 initial results promising 

 

 Support FPGA in OpenCL 
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