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Motivation 

 The shift towards parallel computing has emphasized the 

potential of devices that can offer massive compute parallelism: 

 GPUs (NVIDIA, AMD-ATI) 

 FPGAs (Xilinx, Altera) 

 Many-core processors (IBM Cell, Tilera TILE64, Intel 48-core SCC) 

 High performance computing is moving towards  

 heterogeneous systems that combine 

 Multi-core CPUs with  

 Accelerators to extract more parallelism  

 at a lower power footprint 

 Other examples 

 Fusion: CPU+GPU on the same die 

 Stellarton: CPU+FPGA in the same package 

 Convey HC 1: CPU+Multi-FPGA sharing memory  

 

CPU 

FPGA GPU 

PCI / FSB / HT 
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Computing on FPGAs - Advantages 

 Versatile mapping of application-specific parallelism: 

 Coarse & fine grained parallelism 

 Data and task parallelism 

 Flexible pipelining schemes 
 

 Low power high-performance computation 

 High computational density per Watt compared to CPUs and GPUs 

 High reliability due to lower operating temperatures 
 

 Deployment flexibility   

 Deployed as CPU accelerator (co-processor) or 

 Autonomous System on Chip implementation  
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Computing on FPGAs – Challenges 

 FPGA programming abstraction is low 

 Knowledge on hardware design and device details required (e.g. in 

VHDL, Verilog) 

 

 Time consuming synthesis flow increases complexity of identifying 

performance-optimal implementation 

 Interdependencies between cycles, frequency and concurrency  

 Identifying optimal mapping of application parallelism onto hardware is 

not trivial 

 

 High-level synthesis (HLS) tools help raise the abstraction, but  

 Parallelism extraction may be limited by programming model 

 May not offer evaluation and selection of best parallelism extraction for 

performance 

 
 

5 



FCUDA: CUDA-to-FPGA 

 Use CUDA code in tandem with HLS to: 

 enable high abstraction FPGA programming 

 leverage different types of parallelism during hardware generation 
 

 CUDA: C-based parallel programming model for GPUs 

 Concise expression of coarse grained parallelism 

 Large amount of existing applications 

 Good model for providing common programming interface for kernel 

acceleration on GPUs & FPGAs 
 

 AutoPilot: Advanced HLS tool (from AutoESL, now Xilinx) 

 Automatic fine-grained parallelism extraction 

 Annotation-driven coarse-grained parallelism extraction 

CUDA C 
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FCUDA Flow 

 

FPGA 

Bitfile 

HLS & Logic 

Synthesis 

AutoPilot 

C Code 

FCUDA 

Translation 

Annotated 

CUDA 

FCUDA 

Annotation 

CUDA 

Code Programmer annotates CUDA code with 

pragmas to guide FCUDA translation 

Translate CUDA coarse grained parallelism 

into parallel AutoPilot C tasks 

Transform parallel C tasks into parallel RTL 

cores (AutoPilot) and synthesize RTL onto 

FPGA reconfigurable fabric (Xilinx toolset) 
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CUDA Programming Model 

CUDA Kernel
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Shared Memory
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SP

SP

SP

SFU SFU

Application Parallelism Architecture Parallelism 

 Threads are clustered into thread-blocks 

 Each thread-block is assigned to one Streaming Multiprocessor (SM) 

 Each thread runs on a Streaming Processor (SP) 

8 



 Coarse-grained parallelism is represented at the function level 
 Each function is transformed into a custom core*  

 Functions annotated with the PARALLEL pragma are transformed into 

concurrently executing cores 

 Non-annotated functions are transformed into sequentially executing cores 

(represented by dependence edges) 

AutoPilot Programming Model 

AutoPilot Kernel

#pragma PARALLEL

Function_2()

Function_3()

Function_4()

Function_1()

Function_5()

#pragma UNROLL

FPGA
Core 1

Core 2 Core 3 Core 4

Core 5Thread 1 Thread 2

Dependence 

edge

Application Parallelism Architecture Parallelism 

 Core := allocated set of 

resources required to 

execute corresponding 

procedure computation 
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FCUDA Implementation Overview 

 The FCUDA translation consists of two main stages: 

 FCUDA Front-End stage: 

 Convert logical threads into explicit thread-loops  

 Based on the MCUDA framework ( John Stratton et al., “MCUDA: An efficient 

implementation of CUDA kernels on multi-core CPUs”) 

 FCUDA Back-End stage: 

 Extract coarse grained parallelism at the thread-block level 

 Implemented with the Cetus compiler infrastructure  

 S. Lee et al., “Cetus - An extensible compiler infrastructure for source-to-

source transformation,” 2003. 

CUDA

sync

thread-loop

FCUDA Back-End

thread-block task function

FCUDA Front-End

. . . . . .
. . .

core storage core sync task
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Front-End Transformations 

 Serialize logical threads in thread-loops  

 Thread-blocks are a good granularity for coarse-

level parallelism extraction on the FPGA 

 Handle intra-block synchronization at: 

 CUDA thread-block sync statements 

 Annotated FCUDA task boundaries 

CUDA

sync

thread-loop

. . .

. . .

AS(ty, tx) = A[a + wA * ty + tx]; 

BS(ty, tx) = B[b + wB * ty + tx]; 
 

__syncthreads(); 
 

for ( k = 0; k < BLOCK_SIZE; ++k) 

  Csub += AS(ty, k) * BS(k, tx); 

Input CUDA code 
for (ty=0; ty<blockDim.y; ++ty)  

  for (tx=0; tx<blockDim.x; ++tx) { 

     AS(ty, tx) = A[a + wA * ty + tx]; 

     BS(ty, tx) = B[b + wB * ty + tx]; 

} } 

 

for (ty=0; ty<blockDim.y; ++ty) 

  for (tx=0; tx<blockDim.x; ++tx) { 

     for ( k = 0; k < BLOCK_SIZE; ++k) 

        Csub += AS(ty, k) * BS(k, tx); 

} } 

} 
 

 
} 

thread-loops 
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Back-End Overview 

 Generate task functions based on FCUDA 

 

 Leverage task synchronization and thread-block scheduling 

 

 Manage data storage allocation and data communication between 

generated functions 

task function

. . .

core storage core sync task
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Task Generation 

 Kernel decomposition into compute & data-transfer tasks 

 Aggregate off-chip transfers into coalesced blocks 

 Transform data transfer blocks into DMA bursts 

 Coarse Grain Parallelism Exposure 

 Threadblock  Core (or PE) 

 

read

compute

write

FPGA  core 

Core-private 

BRAM thread-block kernel tasks 

CUDA 

Kernel 

Task 

annotation 

Frontend: 

Thread-loop 

generation 

Backend: 

Task generation 

Backend: 

Memory allocation 
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Task Generation Code Example 

 Identify FCUDA annotated tasks and generate task functions for 

them 

 Analyze data accesses within task and pass necessary variables 

through task function parameters list 

 Identify off-chip and on-chip allocated variables 

 Replace FCUDA annotated task code in kernel with task function call 

#pragma FCUDA TRANSFER begin 

   for ( <thread-loop> )  

      As[ ]=A[ ];   

      Bs[ ]=B[ ]; 

#pragma FCUDA TRANSFER end 

Front-End generated code 

. . . 

#pragma FCUDA COMPUTE begin 

   for ( <thread-loop> )  

      for (k=0; k<BLOCK_SIZE; ++k) 

         Csub += As(ty,k) * Bs(k, tx); 

#pragma FCUDA COMPUTE end 

void fetch (volatile int* A, volatile int* B, int As[ ],  

                 int Bs[ ], …) { … } 

 

void compute (int Csub[ ], int As[ ], int Bs[ ],  

                         dim3 blockDim, … ) { … } 
 

void matrixMul (volatile int* A, volatile int* B, … )  {  

   … 

   fetch (A, B, As, Bs, …); 

   compute (Csub, As, Bs, blockDim, …); 

   …   } 
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Task Synchronization 

 Pragma-driven source code transformation 

 Sequential: temporally interleave compute & transfer 

 Ping-Pong: temporally overlap compute & transfer 

 Higher BRAM cost  

 Interconnect

Logic

  Interconnect

Logic

BRAM 

Block

DMA 

Controller

Compute 

Logic

BRAM 

Block A

DMA 

Controller

Compute 

Logic

BRAM 

Block B

a) Simple Scheme          b) Ping-pong Scheme

Active connection

Idle connection

Sequential scheme 

Ping-Pong scheme 

DMA comp DMA comp 
BRAM 

BRAM 

A 

BRAM 

B 

DMA comp DMA comp 

comp DMA comp DMA 

time 

time 
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Task Synchronization Code Example 

 Statically schedule the execution of thread-blocks based on 

parallelism info provided in programmer-specified annotation 

 Replicate task function calls according to required concurrency 

 Annotate concurrent task function calls with AutoPilot PARALLEL 

pragmas 

 Update stride of loop over thread-block grid 

#pragma FCUDA COMPUTE cores=2 

#pragma FCUDA BLOCKS start_x=0 end_x=63 

#pragma FCUDA SYNC type=simple 

void matrixMul (…) { 

  

 for (by=0; by<gridDim.y; ++by) { 

   for (bx=0; bx<gridDim.x; ++bx) { 

      … 

} } } 

void matrixMul (int * C, int * A, int * B, …) { 

 for (by=0; by<gridDim.y; ++by) { 

   for (bx=0; bx<gridDim.x; bx +=2) { 

     … 

     #pragma AUTOPILOT REGION begin 

     #pragma AUTOPILOT PARALLEL 

      matrixMul_compute(Csub1, As1, Bs1, … ); 

      matrixMul_compute(Csub2, As2, Bs2, … ); 

      #pragma AUTOPILOT REGION end 

    … 

} } } 
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CUDA Memory Spaces Mapping 

   CUDA 

 Global  

 (all-thread accessible) 

 Shared 

(per threadblock accessible) 

 Constant 

 (All-thread read only) 

 Registers 

 (per thread accessible) 

   FPGA 

• DRAM 

 (all-core accessible) 

• BRAM 

 (per core accessible) 

• Registers 

 (per-FU accessible) 
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Data Transfer Code Example 

 In data transfer task functions, merge single off-chip accesses into 

DMA bursts 

 DMA bursts are inferred by memcpy calls in AutoPilot 

 Compute array offsets and lengths 

 Arrange bursts for multiple partial rows 

 In compute task functions, replace direct accesses to off-chip 

memory arrays by on-chip memory-block accesses 

 Update task function parameter list 

 Currently, this transformation is based on info provided in the annotation 

inserted by the programmer 

#pragma FCUDA TRANSFER begin 

   for ( <thread-loop> )  

      As[ ]=A[ ];   

      Bs[ ]=B[ ]; 

#pragma FCUDA TRANSFER end 

void fetch (volatile int* A, volatile int* B, int As[ ],  

                 int Bs[ ], … ) {   

  for (<# rows > ) 

    memcpy(As+tIdx.y, A+a+tIdx.y*wA, bDim.x*sizeof(int)); 

    memcpy(Bs+tIdx.y, B+b+tIdx.y*wB, bDim.x*sizeof(int));   

} 
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CUDA Kernels 

Kernel Data Dimensions Description 

Matrix Multiply  

(matmul) 
4096x4096 

Computes multiplication of two 

arrays (used in many applications) 

Coulombic Potential  

(cp) 

4000 atoms,  

512x512 grid 

Computation of electrostatic 

potential in a volume containing 

charged atoms 

Fast Walsh Transform 

(fwt1) 32 Million element 

vector 

Walsh-Hadamard transform is a 

generalized Fourier transformation 

used in various engineering 

applications 
Fast Walsh Transform 

(fwt2) 

Discreet Wavelet Transform 

(dwt) 
120K points 

1D DWT for Haar wavelets and 

signals 
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Parallelism Impact on FPGA performance 

 maxP: maximum PE (core) count – total PEs 

 maxPxU: maximum (PE*Unroll) – total threads 

 maxPxUxM: maximum PE*Unroll*Partition – balanced  
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FPGA vs. GPU – Latency 

 Nvidia G92 (65nm) 

 Xilinx SX240T Virtex-5 (65nm) 
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Introducing OpenCL  

 Open Computing Language (Open Standard) 

 Royalty free 

 Khronos OpenCL working group (driven by industry) 

 Provide single programming model for heterogeneous 

devices 

 Support all compute resources in system 

 Provide portability 

 Exploit data and task parallelism 

 C99 subset 

 Missing Function pointers, recursion, variable length arrays, etc. 
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Data-Level Parallelism 

 Hierarchical N-dimensional compute domain (N=1,2 or 3) 

 Work-item 

 Work group 

 

 

 

 

 

 

 Platform model 

 1 Host 

 1 or more devices 
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Memory Model & Host-Device IF 

 Multiple address spaces 

 

 Command queues 

 Data transfers 

 Kernel invocations 

 In-order execution 

 Out of order exec. 
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OpenCL Support - Two Main Tasks  

 
 Static compilation 

 FOpenCL flow 

 Run time API implementation 

 Support pre-compiled bitfiles  

 Due to lengthy synthesis runtimes 

 Implement queues for  

 Data transfer commands 

 Kernel invocation commands 

 Download a new bitfile 

 Use previously downloaded bitfile 

 Use embedded hard CPUs, e.g., handle sequential computation  
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Challenges – Flow and Command Queue 

 FOpenCL 

 OpenCL can use a single kernel to target different devices 

 Although it is portable, performance may not exploit the maximum 

potential of every platform 

 For FPGA, we will explore the following 

 Data structure adjustment targeting FPGA specific features 

 Computation adjustment to take advantage of customization 

capability of FPGA 

 

 Runtime API implementation 

 Need to work with low-level FPGA device drivers 

 Coordinate commands between kernels on FPGA fabric and sequential 

computation on embedded hard CPU 
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Challenges – System Level Issues 

 Performance Driven Kernel Mapping 

 In heterogeneous systems with multiple accelerators 

 Different platforms, e.g., FPGA & GPU devices 

 Different types, e.g., different FPGA devices 

 Analyze kernel compute & data patterns to find good workload 

partitioning 

 

 Multi-FPGA application acceleration 

 Scenario 1:  

 Map a single kernel to multiple FPGA devices 

 Scenario 2:  

 Map kernels connected through data streaming to different devices 

and eliminate traffic to global memory 
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Conclusions 

 FPGAs are becoming increasingly attractive in 
heterogeneous multi-processor environments 
 FPGAs can provide application specific parallelism with high 

computational density per Watt 

 However, the devil is in programming the thing 

 

 FCUDA aims to contribute in bridging compilation and 
high-level-synthesis techniques 
 overcoming the hurdle of programmability 

 easy parallelism mapping on the reconfigurable fabric at high 
abstraction 

 efficient extraction of different levels of parallelism in applications 

 enabling common frontend language for heterogeneous platforms 

 initial results promising 

 

 Support FPGA in OpenCL 
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