
Porting Performance across GPUs

and FPGAs

Deming Chen, ECE, University of Illinois

In collaboration with Alex Papakonstantinou1, Karthik Gururaj2,
John Stratton1, Jason Cong2, Wen-Mei Hwu1

1: ECE Department at University of Illinois, Urbana–Champaign

2: CS Department at University of California, Los-Angeles

Outline

 Motivation

 FCUDA Objectives

 FCUDA Flow

 Future Direction – FPGA in OpenCL

 Conclusions

2

Motivation

 The shift towards parallel computing has emphasized the

potential of devices that can offer massive compute parallelism:

 GPUs (NVIDIA, AMD-ATI)

 FPGAs (Xilinx, Altera)

 Many-core processors (IBM Cell, Tilera TILE64, Intel 48-core SCC)

 High performance computing is moving towards

 heterogeneous systems that combine

 Multi-core CPUs with

 Accelerators to extract more parallelism

 at a lower power footprint

 Other examples

 Fusion: CPU+GPU on the same die

 Stellarton: CPU+FPGA in the same package

 Convey HC 1: CPU+Multi-FPGA sharing memory

CPU

FPGA GPU

PCI / FSB / HT

3

Computing on FPGAs - Advantages

 Versatile mapping of application-specific parallelism:

 Coarse & fine grained parallelism

 Data and task parallelism

 Flexible pipelining schemes

 Low power high-performance computation

 High computational density per Watt compared to CPUs and GPUs

 High reliability due to lower operating temperatures

 Deployment flexibility

 Deployed as CPU accelerator (co-processor) or

 Autonomous System on Chip implementation

4

Computing on FPGAs – Challenges

 FPGA programming abstraction is low

 Knowledge on hardware design and device details required (e.g. in

VHDL, Verilog)

 Time consuming synthesis flow increases complexity of identifying

performance-optimal implementation

 Interdependencies between cycles, frequency and concurrency

 Identifying optimal mapping of application parallelism onto hardware is

not trivial

 High-level synthesis (HLS) tools help raise the abstraction, but

 Parallelism extraction may be limited by programming model

 May not offer evaluation and selection of best parallelism extraction for

performance

5

FCUDA: CUDA-to-FPGA

 Use CUDA code in tandem with HLS to:

 enable high abstraction FPGA programming

 leverage different types of parallelism during hardware generation

 CUDA: C-based parallel programming model for GPUs

 Concise expression of coarse grained parallelism

 Large amount of existing applications

 Good model for providing common programming interface for kernel

acceleration on GPUs & FPGAs

 AutoPilot: Advanced HLS tool (from AutoESL, now Xilinx)

 Automatic fine-grained parallelism extraction

 Annotation-driven coarse-grained parallelism extraction

CUDA C

6

FCUDA Flow

FPGA

Bitfile

HLS & Logic

Synthesis

AutoPilot

C Code

FCUDA

Translation

Annotated

CUDA

FCUDA

Annotation

CUDA

Code Programmer annotates CUDA code with

pragmas to guide FCUDA translation

Translate CUDA coarse grained parallelism

into parallel AutoPilot C tasks

Transform parallel C tasks into parallel RTL

cores (AutoPilot) and synthesize RTL onto

FPGA reconfigurable fabric (Xilinx toolset)

7

CUDA Programming Model

CUDA Kernel

Grid Block

(0,0)

Block

(1,0)

Block

(0,1)

Block

(1,1)

Thread-Block (0,1)

Thread

(0,0)

Thread

(1,0)

Thread

(2,0)

Thread

(0,1)

Thread

(1,1)

Thread

(2,1)

GPU

SM SM SM

SM SM SM

Streaming Multiprocessor

Shared Memory

SP

SP

SP

SP

SP

SP

SFU SFU

Application Parallelism Architecture Parallelism

 Threads are clustered into thread-blocks

 Each thread-block is assigned to one Streaming Multiprocessor (SM)

 Each thread runs on a Streaming Processor (SP)

8

 Coarse-grained parallelism is represented at the function level
 Each function is transformed into a custom core*

 Functions annotated with the PARALLEL pragma are transformed into

concurrently executing cores

 Non-annotated functions are transformed into sequentially executing cores

(represented by dependence edges)

AutoPilot Programming Model

AutoPilot Kernel

#pragma PARALLEL

Function_2()

Function_3()

Function_4()

Function_1()

Function_5()

#pragma UNROLL

FPGA
Core 1

Core 2 Core 3 Core 4

Core 5Thread 1 Thread 2

Dependence

edge

Application Parallelism Architecture Parallelism

 Core := allocated set of

resources required to

execute corresponding

procedure computation

9

FCUDA Implementation Overview

 The FCUDA translation consists of two main stages:

 FCUDA Front-End stage:

 Convert logical threads into explicit thread-loops

 Based on the MCUDA framework (John Stratton et al., “MCUDA: An efficient

implementation of CUDA kernels on multi-core CPUs”)

 FCUDA Back-End stage:

 Extract coarse grained parallelism at the thread-block level

 Implemented with the Cetus compiler infrastructure

 S. Lee et al., “Cetus - An extensible compiler infrastructure for source-to-

source transformation,” 2003.

CUDA

sync

thread-loop

FCUDA Back-End

thread-block task function

FCUDA Front-End

.
. . .

core storage core sync task

10

Front-End Transformations

 Serialize logical threads in thread-loops

 Thread-blocks are a good granularity for coarse-

level parallelism extraction on the FPGA

 Handle intra-block synchronization at:

 CUDA thread-block sync statements

 Annotated FCUDA task boundaries

CUDA

sync

thread-loop

. . .

. . .

AS(ty, tx) = A[a + wA * ty + tx];

BS(ty, tx) = B[b + wB * ty + tx];

__syncthreads();

for (k = 0; k < BLOCK_SIZE; ++k)

 Csub += AS(ty, k) * BS(k, tx);

Input CUDA code
for (ty=0; ty<blockDim.y; ++ty)

 for (tx=0; tx<blockDim.x; ++tx) {

 AS(ty, tx) = A[a + wA * ty + tx];

 BS(ty, tx) = B[b + wB * ty + tx];

} }

for (ty=0; ty<blockDim.y; ++ty)

 for (tx=0; tx<blockDim.x; ++tx) {

 for (k = 0; k < BLOCK_SIZE; ++k)

 Csub += AS(ty, k) * BS(k, tx);

} }

}

}

thread-loops

11

Back-End Overview

 Generate task functions based on FCUDA

 Leverage task synchronization and thread-block scheduling

 Manage data storage allocation and data communication between

generated functions

task function

. . .

core storage core sync task

12

Task Generation

 Kernel decomposition into compute & data-transfer tasks

 Aggregate off-chip transfers into coalesced blocks

 Transform data transfer blocks into DMA bursts

 Coarse Grain Parallelism Exposure

 Threadblock  Core (or PE)

read

compute

write

FPGA core

Core-private

BRAM thread-block kernel tasks

CUDA

Kernel

Task

annotation

Frontend:

Thread-loop

generation

Backend:

Task generation

Backend:

Memory allocation

13

Task Generation Code Example

 Identify FCUDA annotated tasks and generate task functions for

them

 Analyze data accesses within task and pass necessary variables

through task function parameters list

 Identify off-chip and on-chip allocated variables

 Replace FCUDA annotated task code in kernel with task function call

#pragma FCUDA TRANSFER begin

 for (<thread-loop>)

 As[]=A[];

 Bs[]=B[];

#pragma FCUDA TRANSFER end

Front-End generated code

. . .

#pragma FCUDA COMPUTE begin

 for (<thread-loop>)

 for (k=0; k<BLOCK_SIZE; ++k)

 Csub += As(ty,k) * Bs(k, tx);

#pragma FCUDA COMPUTE end

void fetch (volatile int* A, volatile int* B, int As[],

 int Bs[], …) { … }

void compute (int Csub[], int As[], int Bs[],

 dim3 blockDim, …) { … }

void matrixMul (volatile int* A, volatile int* B, …) {

 …

 fetch (A, B, As, Bs, …);

 compute (Csub, As, Bs, blockDim, …);

 … }

14

Task Synchronization

 Pragma-driven source code transformation

 Sequential: temporally interleave compute & transfer

 Ping-Pong: temporally overlap compute & transfer

 Higher BRAM cost

 Interconnect

Logic

 Interconnect

Logic

BRAM

Block

DMA

Controller

Compute

Logic

BRAM

Block A

DMA

Controller

Compute

Logic

BRAM

Block B

a) Simple Scheme b) Ping-pong Scheme

Active connection

Idle connection

Sequential scheme

Ping-Pong scheme

DMA comp DMA comp
BRAM

BRAM

A

BRAM

B

DMA comp DMA comp

comp DMA comp DMA

time

time

15

Task Synchronization Code Example

 Statically schedule the execution of thread-blocks based on

parallelism info provided in programmer-specified annotation

 Replicate task function calls according to required concurrency

 Annotate concurrent task function calls with AutoPilot PARALLEL

pragmas

 Update stride of loop over thread-block grid

#pragma FCUDA COMPUTE cores=2

#pragma FCUDA BLOCKS start_x=0 end_x=63

#pragma FCUDA SYNC type=simple

void matrixMul (…) {

 for (by=0; by<gridDim.y; ++by) {

 for (bx=0; bx<gridDim.x; ++bx) {

 …

} } }

void matrixMul (int * C, int * A, int * B, …) {

 for (by=0; by<gridDim.y; ++by) {

 for (bx=0; bx<gridDim.x; bx +=2) {

 …

 #pragma AUTOPILOT REGION begin

 #pragma AUTOPILOT PARALLEL

 matrixMul_compute(Csub1, As1, Bs1, …);

 matrixMul_compute(Csub2, As2, Bs2, …);

 #pragma AUTOPILOT REGION end

 …

} } }

16

CUDA Memory Spaces Mapping

 CUDA

 Global

 (all-thread accessible)

 Shared

(per threadblock accessible)

 Constant

 (All-thread read only)

 Registers

 (per thread accessible)

 FPGA

• DRAM

 (all-core accessible)

• BRAM

 (per core accessible)

• Registers

 (per-FU accessible)

17

Data Transfer Code Example

 In data transfer task functions, merge single off-chip accesses into

DMA bursts

 DMA bursts are inferred by memcpy calls in AutoPilot

 Compute array offsets and lengths

 Arrange bursts for multiple partial rows

 In compute task functions, replace direct accesses to off-chip

memory arrays by on-chip memory-block accesses

 Update task function parameter list

 Currently, this transformation is based on info provided in the annotation

inserted by the programmer

#pragma FCUDA TRANSFER begin

 for (<thread-loop>)

 As[]=A[];

 Bs[]=B[];

#pragma FCUDA TRANSFER end

void fetch (volatile int* A, volatile int* B, int As[],

 int Bs[], …) {

 for (<# rows >)

 memcpy(As+tIdx.y, A+a+tIdx.y*wA, bDim.x*sizeof(int));

 memcpy(Bs+tIdx.y, B+b+tIdx.y*wB, bDim.x*sizeof(int));

}

18

CUDA Kernels

Kernel Data Dimensions Description

Matrix Multiply

(matmul)
4096x4096

Computes multiplication of two

arrays (used in many applications)

Coulombic Potential

(cp)

4000 atoms,

512x512 grid

Computation of electrostatic

potential in a volume containing

charged atoms

Fast Walsh Transform

(fwt1) 32 Million element

vector

Walsh-Hadamard transform is a

generalized Fourier transformation

used in various engineering

applications
Fast Walsh Transform

(fwt2)

Discreet Wavelet Transform

(dwt)
120K points

1D DWT for Haar wavelets and

signals

19

Parallelism Impact on FPGA performance

 maxP: maximum PE (core) count – total PEs

 maxPxU: maximum (PE*Unroll) – total threads

 maxPxUxM: maximum PE*Unroll*Partition – balanced

5/3/2011 20

0

1

2

3

4

5

6

7

8

mm_32 mm_16 fwt2_32 fwt2_16 fwt1_32 fwt1_16 cp_32 cp_16 dwt_32 dwt_16

L
a

te
n

cy
 (

n
o

rm
a

li
ze

d
 o

v
er

 m
a

x
P

)

maxP maxPxU maxPxUxM

FPGA vs. GPU – Latency

 Nvidia G92 (65nm)

 Xilinx SX240T Virtex-5 (65nm)

21

0

0.5

1

1.5

2

2.5

3

3.5

mm_32 mm_16 fwt2_32 fwt2_16 fwt1_32 fwt1_16 cp_32 cp_16 dwt_32 dwt_16

L
a

te
n

cy
 (

n
o
rm

a
li

ze
d

 o
v

er
 G

P
U

) GPU

FPGA (16GB/s)

FPGA (64GB/s)

Introducing OpenCL

 Open Computing Language (Open Standard)

 Royalty free

 Khronos OpenCL working group (driven by industry)

 Provide single programming model for heterogeneous

devices

 Support all compute resources in system

 Provide portability

 Exploit data and task parallelism

 C99 subset

 Missing Function pointers, recursion, variable length arrays, etc.

22

Data-Level Parallelism

 Hierarchical N-dimensional compute domain (N=1,2 or 3)

 Work-item

 Work group

 Platform model

 1 Host

 1 or more devices

23

Memory Model & Host-Device IF

 Multiple address spaces

 Command queues

 Data transfers

 Kernel invocations

 In-order execution

 Out of order exec.

24

OpenCL Support - Two Main Tasks

 Static compilation

 FOpenCL flow

 Run time API implementation

 Support pre-compiled bitfiles

 Due to lengthy synthesis runtimes

 Implement queues for

 Data transfer commands

 Kernel invocation commands

 Download a new bitfile

 Use previously downloaded bitfile

 Use embedded hard CPUs, e.g., handle sequential computation

25

Challenges – Flow and Command Queue

 FOpenCL

 OpenCL can use a single kernel to target different devices

 Although it is portable, performance may not exploit the maximum

potential of every platform

 For FPGA, we will explore the following

 Data structure adjustment targeting FPGA specific features

 Computation adjustment to take advantage of customization

capability of FPGA

 Runtime API implementation

 Need to work with low-level FPGA device drivers

 Coordinate commands between kernels on FPGA fabric and sequential

computation on embedded hard CPU

26

Challenges – System Level Issues

 Performance Driven Kernel Mapping

 In heterogeneous systems with multiple accelerators

 Different platforms, e.g., FPGA & GPU devices

 Different types, e.g., different FPGA devices

 Analyze kernel compute & data patterns to find good workload

partitioning

 Multi-FPGA application acceleration

 Scenario 1:

 Map a single kernel to multiple FPGA devices

 Scenario 2:

 Map kernels connected through data streaming to different devices

and eliminate traffic to global memory

 27

Conclusions

 FPGAs are becoming increasingly attractive in
heterogeneous multi-processor environments
 FPGAs can provide application specific parallelism with high

computational density per Watt

 However, the devil is in programming the thing

 FCUDA aims to contribute in bridging compilation and
high-level-synthesis techniques
 overcoming the hurdle of programmability

 easy parallelism mapping on the reconfigurable fabric at high
abstraction

 efficient extraction of different levels of parallelism in applications

 enabling common frontend language for heterogeneous platforms

 initial results promising

 Support FPGA in OpenCL

28

Acknowledgement

 We acknowledge the support of the following funding
agencies

 GSRC

 NSF

Thank You Very Much

29

