
High-Level Development Tools

Data Flow C Code Textual Math Modeling Statechart

Graphical System Design Platform

MacintoshLinux® Windows Real-Time FPGA Micro

Desktop Platform Embedded Platform

Graphical System Design for 

Heterogeneous Platforms

May 1, 2011

Kaushik Ravindran, Hugo A. Andrade, Guang Yang

FCCM Pre-Conference Workshop:

High-Level Synthesis and Parallel Computation Models



• NI Vision Overview

• LabVIEW Context

• RIO Architecture/Platform Described

• Explicit Language Notation

• Implicit Language Notation

• Research Challenges

Agenda



What We Do

Modular 

Measurement and 

Control Hardware

Productive Software 

Development Tools

Highly Integrated 

Systems Platforms

Used By Engineers and Scientists for Test, Design and Control



The National Instruments Vision
“To do for test and measurement

what the spreadsheet did for financial analysis.”

Virtual Instrumentation



Moore’s Law for InstrumentationHistory of SW Continuity & Expanding Value
1980 1990 2000 2010

Transistor | Decreased by a factor of 2,000 in size

LabWindows™/CVI

LabVIEW FPGA & RIO

Instrument Control Interfaces

LabVIEW

LabVIEW Real-time



The NI Approach – Integrated Platforms

High-Speed
Digitizers

High-Resolution
Digitizers and DMMs

Multifunction 
Data Acquisition

Dynamic
Signal Acquisition

Digital I/O

Instrument
Control

Counter/
Timers

Machine
Vision

Motion 
Control

Distributed I/O and
Embedded Control

Laptop PC PDADesktop PCPXI Modular Instrumentation

Keypad

LCD

Sound

Acoustics

RF
Signal

Battery

Body & ChassisAudio
Engine

Durability

Tire & Brake Safety
Emissions Electronics

Temperature

Monitoring
Waste Monitoring

Process Control

Motor and Valve Control



The National Instruments Vision Evolved…

Real-time 

Measurements

Embedded Monitoring

Hardware-in-the-loop

Virtual Instrumentation

Instrumentation

RF

Digital

Distributed

Industrial Embedded

Industrial Control (PAC)

Machine Control

Electronic Devices

Code Generation

“To do for embedded what the 

PC did for the desktop.”

“To do for test and measurement

what the spreadsheet did 

for financial analysis.”

Graphical System Design

Hardware and Software Integration differentiate our solution



LEGO®

MINDSTORMS ® NXT
“the smartest, coolest toy

of the year”

CERN Large Hadron 

Collider
“the most powerful 

instrument on earth”

Graphical System Design

Graphical System Design Platform

Empowering Users Through Software



LabVIEW Targets
• Scalable from distributed network to sensors

Portable

FPGA

PC

Handheld 

Industrial Controllers (PXI)

Sensor

Vision System

DSP/MPU

Embedded Controllers

http://images.google.com/imgres?imgurl=www.pjrc.com/store/xcs10xl_plcc.jpg&imgrefurl=http://www.pjrc.com/store/xcs10xl_plcc.html&h=472&w=476&prev=/images?q=xilinx+fpga&start=40&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&sa=N


High Speed & High Precision Control

with LabVIEW Real-Time & FPGA

Scanning Probe 

Microscope with PLL

Ultrastable Atomic 

Force Microscope

Nanoimprint 

Lithography (Tsao)

Precision Servo-

Hydraulic Control

http://images.google.com/imgres?imgurl=http://www.canogaparkhs.org/pics/ucla_logo.gif&imgrefurl=http://www.canogaparkhs.org/tutoring.jsp&usg=__moNKv4SObxfKsrqZbgRtGZWhPtI=&h=121&w=161&sz=15&hl=en&start=10&um=1&tbnid=qtq3P-KQZz-ZSM:&tbnh=74&tbnw=98&prev=/images?q=ucla+logo&hl=en&rlz=1R2ADFA_enUS346&um=1
http://www.ptpart.co.uk/


Controlling the World’s Largest Fuel-Cell Hybrid 

Locomotive with LabVIEW and CompactRIO

• Control and monitor the safety and 
operation of a 250 kW fuel-cell 
locomotive

• CompactRIO, LabVIEW FPGA 
Module, Real-Time Module

• Complex control algorithms at very 
fast loop rates

“We chose LabVIEW and CompactRIO because the NI C Series modules with integrated signal 

conditioning helped us implement fast monitoring of the various I/O points while connecting to a wide range 

of specialty sensors such as flowmeters and pressure sensors.“ Tim Erickson – Vehicle Projects LLC 

http://sine.ni.com/cms/images/casestudies/train.jpg


CompactRIO

PXI RIO

PCI RIO

Number of Systems Deployed

S
y
s
te

m
 F

le
x
ib

ili
ty

 a
n

d
 P

ri
c
e

Single-Board

RIO

CompactRIO

Integrated LabVIEW
Zynq

targets

Scalable Platform…

Custom I/O

I/O

I/O

I/O

Real-time 

Processor
FPGAWindows



Custom I/O

I/O

I/O

I/O

Processor FPGA

Microprocessors

• Floating-point processing

• Communications

• Multicore technology

• Reprogrammable

FPGAs

• High-speed control 

• High-speed processing

• Reconfigurable

• True Parallelism

• High Reliability

I/O 

• Custom timing & triggering

• Modular I/O

• Calibration

• Custom modules

High-Speed Data Streaming

• Synchronize memory access

• Fast data links for maximum performance

A/D Technology

• Multirate sampling

• Individual channel triggering



Processor FPGA

DAC

ADC

Memory Memory

I/ONI ASIC

LabVIEW FPGA

•Graphical FPGA Design

•Fixed-point processing

•Analysis, control and 

communication functions

• Integrate VHDL IP

LabVIEW Real-Time

•Multicore programming

•Analysis, control and 

communication functions

•Integrate C code and text-

based math

•Tight timing & synchronization of I/O•High-speed data transfer



Future uP and FPGA in one Chip

Zynq Extended Processing Platform



HPC meets tough Real-Time Challenges

Large Telescope 

Mirror Control
Tokomak

Plasma Control
Wind Turbine Sound Source

Characterization

CERN Hadron Collider Early Cancer Detection Structural Health Monitoring

Solving the most 

sophisticated control

applications 

Actuators

Sensors

Actuators

Sensors

Actuators

Sensors

Actuators

Sensors

Actuators

Sensors

Actuators

Sensors

Multicore CPU

Multicore CPU

GPGPUGPGPU

FPGA

FPGA

Visualization 

(User Interface)



The Y-Chart System Design Methodology 

Performance Evaluation

Analysis & Mapping

Platform ArchitectureApplication Logic

1. Kienhuis, Deprettere, van der Wolf, and Vissers., 

“A Methodology to Design Programmable Embedded 

Systems - The Y-Chart Approach. Embedded Processor 

Design Challenges: Systems, Architectures, Modeling, 

and Simulation” - SAMOS, p.18-37, Jan. 2002.

2. Keutzer, Newton, Rabaey, Sangiovanni-Vincentelli, 

“System-level Design: Orthogonalization of Concerns 

and Platform-based Design,” IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and 

Systems, 19(12): p. 1523-1543, Dec. 2000.



High-Level Design Models

PXIPC/Mac/Linux FlexRIO

Dataflow C Code Textual Math Simulation Statechart

CompactRIO Custom

Graphical System Design Platform



LabVIEW Today – LabVIEW 2010

• LabVIEW

 What is LabVIEW

 Product Family

• Embedded System Design

• Embedded Design Platforms Brochure

• Downloadable Slides from Embedded Design 

Session

http://www.ni.com/labview/
http://www.ni.com/labview/whatis/
http://www.ni.com/labview/family/
http://www.ni.com/embedded/
http://www.ni.com/embedded/
https://lumen.ni.com/nicif/us/niwkembdsn/content.xhtml
https://lumen.ni.com/nicif/us/niwkembdsn/content.xhtml
https://lumen.ni.com/nicif/us/niwkembdsn/content.xhtml
https://lumen.ni.com/nicif/us/niwkembdsn/content.xhtml
https://lumen.ni.com/nicif/us/niwkembdsn/content.xhtml
http://www.nxtbook.com/nxtbooks/ni/embeddeddesignplatforms/


Front Panel

Block Diagram

LabVIEW Virtual Instrument



Block Diagram Window

Front Panel Window

Creating a VI

Input
Terminals

Output
Terminal

Boolean
Control

Graph
Indicator

21







The G (LabVIEW) Language Model

• Homogenous dataflow language 
 Structured case (switch, select) and loops

• “Structured dataflow”

• Run-time scheduling
 Explicit task level parallelism

 Implicit parallelism heuristically identified

• Synthesizable language
 To machine code on x86 and PPC processors

 To VHDL for FPGAs

 To C for embedded processors

• Turing complete



• Block diagram execution

– Dependent on the flow of data

– Block diagram does NOT 

execute left to right

• Node executes when data 

is available to ALL input 

terminals

• Nodes supply data to all 

output terminals when 

done

Dataflow Programming

25



Structured Dataflow



LabVIEW as a Target Language

• Application Wizards – Patterns

• StateCharts

• MathScript

• Control and Simulation Diagram

• Express Nodes and X-nodes

• I/O Nodes



Application Wizards - Patterns



Application Wizards - Patterns













System Deployment

• Target aware synthesis

• I/O Port Abstraction

 I/O Classes

 Protocol generation

• Channel Abstraction

 FIFO

 Loop-to-loop

 Peer-to-peer

 Board-to-host (DMA)



System Deployment

• Timing

 Expressing an order

• Language constructs

• Operating Environments

 Reality of Platform timing

• Static analysis



Time Scale

Flexibility

Backplane timing

IO synchronized with a global clock

Software programmed FPGAs

Timed loops

Software constructs: FIFOs | Queues

Software structured dataflow

Nanoseconds 

Microseconds 

Milliseconds 

System Level Integration of Time



FPGA-based I/O Applications

Custom Analog I/O

Multiple Scan Rates    

Custom Analog 

Triggering

Counters

Custom Counters

PWMClocks

Custom Timing and Synchronization

Built-in IP Processing Blocks



The Challenge Going Forward
Application Trends

• 1000’s of parallel tasks

• Large node/channel counts

• High performance requirements

• E.g. streaming DSP applications

Platform Trends

• 100’s of processing elements

• Heterogeneous processors and memories

• Distributed I/O

• E.g. FPGA targets

CLIP

Concurrent Application

Parallel Platform

How to map the tasks and data in a 

concurrent application to the processing 

and memory resources on a platform?



Key Challenges

• Model of computation

• Analysis and optimization back end

• Performance models and timing library

• Actor definition

• IP modeling and integration

• Simulation and verification

• Code generation and implementation



Modeling System-Level Designs

System-level designs introduce new modeling constructs:

• Systems

• Targets

• Mixed MoC Diagrams

• Asynchronous Wires
G Dataflow with 

Asynchronous Data

Connection

Static Data Flow 

MoC 

Inter-Target 

Asynchronous Data 

Connections





NI CONFIDENTIAL

High-Speed Streaming is Complex Today

• Challenges

– LabVIEW G model

• Original specification from algorithm designer

• Not feasible for highly efficient implementation 

on FPGA targets

– Implementation challenges

• Floating to fixed point conversion

• Array data to point-by-point data conversion

• Explicit concurrency representation

• FPGA target constraints

• Integration with internal and third-party IP



NI CONFIDENTIAL

Domain Expert Expectations for High-Speed 

Streaming

• High-level DSP representation that matches algorithm theory
– Algorithms written independently of hardware target

– Deal in domain terms of token rate, throughput, and latency

• Explore high-level design tradeoffs without diving into 
implementation details
– Tune performance with high-level constraints

– Access the details if needed



MoCs for Streaming Applications

Expressive Analyzable

Process 

Networks

Kahn Process 

Networks

Boolean

Dataflow

Static Dataflow

Cyclo-static 

Dataflow

Homogeneous 

Dataflow

SHIM

Integer 

Dataflow

Heterochronous 

Dataflow

No Yes
Deadlock and boundedness 

decidable?

No YesStatic scheduling?

Deter-

ministic?
No Yes

[1] Edward A. Lee, “Concurrent Models of Computation for Heterogeneous Software”, EECS 290, 2004. 

[2] Stephen Edwards, “SHIM: A Deterministic Model for Heterogeneous Embedded Systems”, UCB EECS Seminar, 2006.  

[3] Thanks: Abhijit Davare, UCB.  

Synchronous? No Yes

Key trade-off: Analyzability vs. Expressibility

Parameterized

Dataflow

Analyzable Models



Analysis and Optimization Features

• Core dataflow optimizations

 Model validation (deadlock and unboundedness detection)

 Throughput and latency computation

 Buffer size optimization (under throughput constraints)

 Schedule computation

• Hardware specific optimizations

 Resource constrained schedule computation

 Actor fusion

 Joint optimization of latency, throughput, and buffer size

 Rate matching

 IP configuration selection

 Implementation strategy selection



Directions Ahead

• Graphical syntax and analysis extensions

 Parameterized cyclo-static dataflow (PCSDF) model

 Access patterns for hardware implementations

• Specification for control and timing with dataflow

 Scenario aware dataflow

 Heterochronous dataflow

• Other hardware specific problems

 Self timed Vs scheduled implementation strategy selection

 IP interface standardization



Re-use Drives IP Abstraction Levels

Hard 

IPs

RTL/Pin Level IPs

Transaction 

Level IPs

Domain 

Specific 

Abstract 

IPs

Xilinx

Altera

Almost everyone Mostly verification

IP providers

System solution providers

NI, Xilinx

PowerPC

DSP …

All HDL IPs, …

AMBA, AXI, … 

IP-XACT (IEEE 1685)

AMBA, AXI

SystemC/TLM

NI DSP

Designer

PCIe, USB, …

NI actors, Xilinx actors

A
b

st
ra

ct
io

n

Providers



Current Challenges of IP Integration

• Fragmented IP that lacks standards
 Some standards on meta-data and structural interfaces (IP-

XACT), and protocols (AXI)

• But vendors not adopting standards to:
 Describe IP Interface

 Capability

 Behavior

 Provide coherent simulation models 

 Pragmatically provide an integration experience for 
configuring the IP

 Interface to high-level description languages



Describe Just Enough IP for the Domain Expert

DSP Designer User 3 2

Actor Designer 

I16 I32

Din(4X1)

I32

Dout

I32
sum

i

sum

Implementation

Concerns:

- Protocol details

- Cycle accurate

behavior

- Optimized Code

Gen

Modeling Concerns:

- MoC Behavior

- Simulation

- Exploration

- Analysis 

Describe IP Protocol Details for the Tools



Basic Description of IP <IC, OC, II, ET, IE, IP, OP>

<3,2,6,8,T,[1,0,1,0,1,0],[0,1,0,0,0,1]>

3 2
in outtoken Input Count = 3

Input access Pattern = [1,0,1,0,1,0]

token Output Count = 2

Output access Pattern = [0,1,0,0,0,1]

Execution Time = 8

Initiation Interval = 6

Is ET Exact = True

IP=[1,0,1,0,1,0]

OP=[0,1,0,0,0,1]

Time 

1 32

2

II=6

1

ET=8

0             1            2               3               4               5             6   7             8  

21
IP=[1,0,1,0,1,0]

3

1
OP=[0,1,0,0,



Future Research Challenges 

• IP exchange mechanisms that include model and protocol 
descriptions – standardization needed

• High-level Models of Computations to efficient implementations

• Compilation time

• Fast  early estimation (timing, performance, area, power, etc.) 
from high level models

• Multi-level soft-cores and virtual fabrics

• Dynamic partial reconfiguration

• HW/SW operating systems

• Standard floating/fixed point representation and automatic 
conversion



Thank You


