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Neural networks (NNs) have been widely used in many

machine learning algorithms and have been deployed for

various industrial applications like image classification, speech

recognition, and automated control. Spiking neural network

(SNN), known as the third-generation neural network, in-

corporates timing information in the network and is more

biologically plausible [1]. Compared to today’s artificial and

convolutional neural networks (ANN and CNN) where all

neurons in each layer will always be activated and computed,

SNN only activates those neurons whose membrane potential

exceed the threshold potential [2]. As a result, SNN requires

fewer computation resources and less data communication be-

tween network layers due to its event-driven nature. Although

SNN has been blamed for the relatively lower accuracy, recent

studies on converted SNNs have improved its accuracy to a

similar level of ANN and CNN for smaller network models

like MNIST and CIFAR-10, and have demonstrated the great

potential of SNN in future deep learning systems [2].

For this work, we focus on SNNs that have been obtained

through the conversion of ANNs (fully-connected layers) and

leave convolutional layers for future work. Although this limits

the accuracy of larger networks, our current focus is on the

aspects of hardware implementation. A major issue with the

converted SNNs is that their network topology is based on

the underlying ANN model, which results in a large number

of memory accesses. This is especially significant in resource

constrained devices that are used for edge inference, where

low-latency low-power memory is at a premium.

In this paper, we design and implement a framework called

EASpiNN, with the goal to enable fast and effective evaluation

of various SNN-based network models for inference on edge

devices. EASpiNN implements the widely used integrate-and-

fire (IF) SNN model [2] on Xilinx ARM-FPGA System-on-

Chips (SoCs) using high-level synthesis (HLS) C++. EA-

SpiNN can automatically run any MNIST and CIFAR-10

based networks without rebuilding the hardware design on the

same ARM-FPGA SoC. Moreover, it supports the automatic

selection of the optimal design point across a range of Xilinx

ARM-FPGA SoCs including the ZedBoard, Zynq ZC706,

Zynq UltraScale+ ZCU102 and ZCU104 boards.

Within EASpiNN, we optimize the performance of the

SNN implementation by customizing both its computation and

memory access. For computation optimization, we explore

the loop pipelining and parallelization techniques for major

computing engines [3]. For the memory optimization, the

biggest challenge is to buffer the large weight matrix using on-

chip BRAM and/or UltraRAM (URAM) resource: the weight

matrix dominates the storage requirement for ANNs like the

MNIST and CIFAR-10 networks and its size exceeds the total

size of on-chip BRAM and/or URAM on an embedded FPGA.

EASpiNN automatically decides the optimal cutoff point to

partially buffer the maximum amount of weight matrix, based

on the network model parameters and the size of the available

BRAM and/or URAM resource on a given FPGA. Finally, it

also enables burst access for all off-chip DRAM accesses.

Our EASpiNN framework is built using Xilinx SDSoC

2019.1 and the FPGA accelerator runs at a frequency of

100MHz across all the four aforementioned Xilinx ARM-

FPGA SoCs. In our preliminary implementation, no model

compression has been applied yet, and the weights and mem-

brane potential are full 32-bit floating point numbers without

any data quantization. For three different network models

MNIST (610 neurons), MNIST (2,410 neurons), and CIFAR-

10 (2,410 neurons), EASpiNN achieves 9.1x, 4.3x, and 4.2x

speedups over the ARM CPU on the Xilinx ZCU104 FPGA

board that has the largest amount of on-chip memory among

the four boards we studied. Even on the ZedBoard that has

the smallest amount of on-chip memory, EASpiNN achieves

2.31x, 1.76x, and 2.95x speedups over the ARM CPU.
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