
High-Performance Parallel Radix Sort on FPGA

Bashar Romanous, Mohammadreza Rezvani, Junjie Huang,
Daniel Wong, Evangelos E. Papalexakis, Vassilis J. Tsotras, Walid Najjar

Department of Computer Science and Engineering, University of California, Riverside

Email: {broma002, mrezv002, jhuan308, danwong}@ucr.edu, {epapalex, tsotras, najjar}@cs.ucr.edu

Abstract—Sorting is a key part in database operators (like
duplicate elimination, sort-merge joins and group-by aggrega-
tions). Sorting billions of records in a fast and energy efficient
manner has become a key research challenge. In this work, we
explore sorting in-memory using a parallel version of Radix
Sort to build a high-performance hardware accelerator, called
HARS (Hardware Accelerated Radix Sort). Our design enables
dividing the unsorted dataset among parallel engines without
the need for a merge step. HARS is implemented on Micron’s
SB-852 FPGA board. The proposed accelerator provides high
throughput in-memory sorting at a rate of 44 Million 128-bit
records per second. HARS is 1.4x faster than CPU and 1.36x
faster than GPU when GPU bandwidth is normalized. Projected
performance of a proposed board with a more capable FPGA
chip would yield 1.25x higher throughput.

As technology evolves, new hardware architectures and plat-

forms induce a re-evaluation of sorting algorithms and their

implementations on these new architectures. Because the par-

allel versions of radix sort rely on building and storing a

histogram for each Processing Element (PE), it was considered

unsuitable for FPGA acceleration as it required too many

costly reads and writes to memory. However, new FPGA

architectures such as the Xilinx UltraScale+ series [1] and

the Intel Stratix 10 DX [2] come with very large on-chip

storage that makes it worthwhile to re-evaluate radix sort.

Here we describe, implement and evaluate HARS, a parallel

implementation of radix sort on an FPGA that takes advantage

of this large on-chip storage. Our design enables dividing the

unsorted dataset among parallel engines without the need for

a merge step.

The main contributions of this paper are:

• A novel parallel in-memory radix sort implementation on

FPGA that does not rely on sorting networks and avoids

a final, performance limiting, merge step.

• The size of the sorted data is not restricted by the

available on-chip memory.

• A constant throughput that is not dependent on the size

of data being sorted and scales with on-chip memory size

and off-chip memory bandwidth.

Since HARS is designed as an in-memory sorting applica-

tion, all measurements were done after the data was loaded

to global memory. Datasets considered two types of 128-bit

records: (1) 80-bit key and 48-bit value (or pointer). (2) 64-

bit key and 64-bit value. Even though GPU raw throughput of

sorted records per second is 5.4x higher than that of HARS on

FPGA, when throughput is normalized by bandwidth, FPGA

is 1.2x and 1.36x higher than CPU and GPU respectively.

T
hr

o
ug

hp
ut

 [
R

ec
o

rd
s/

C
yc

le
]

0

0.003

0.006

0.008

0.011

FPGA
GPU (Nvidia TITAN X Pascal)
CPU (Intel Xeon E5-1620 v4)

(a) Unit throughput

T
hr

o
ug

hp
ut

 (R
ec

o
rd

s/
S

ec
)

no
rm

al
iz

ed
 t

o
 b

an
d

w
id

th

0

0.175

0.35

0.525

0.7

FPGA
GPU (Nvidia TITAN X Pascal)
CPU (Intel Xeon E5-1620 v4)

(b) Raw throughput normalized by
bandwidth

Fig. 1. (a) Throughput normalized by number of PEs, SMs and cores for
FPGA, GPU and CPU respectively and (b) per bandwidth, for 268M records
dataset

HARS uses both bandwidth and clock cycles more efficiently

than both CPUs and GPUs.

The availability of on-chip memory makes it possible to

store the histograms locally and reduce the traffic to/from

on-board global memory. Using higher radices reduces the

number of required iterations in the radix sort algorithm,

but increases the sizes of local histograms. Having more

PEs increases the parallelism but requires more area on the

FPGA(s). Our experimental evaluation has shown that:

• HARS delivers a constant throughput irrespective of the

dataset size, unlike the CPU. HARS is therefore more

scalable than the CPU implementation.

• The HARS throughput of a single FPGA PE, measured

in records/cycle is 1.7x times larger of the GPU’s unit of

Streaming Multiprocessors (SMs) and 8.2x times larger

than that of the CPU’s core, as shown in Fig. 1a. Hence

demonstrating the computational efficiency of the HARS

approach.

• Similarly, when throughput is normalized by bandwidth,

HARS is more bandwidth efficient than either the CPU

or GPU implementations as shown in Fig. 1b. Thus,

HARS’s effectiveness in using the available bandwidth

is demonstrated.

REFERENCES

[1] “UltraScale Architecture and Product Data Sheet: Overview,”
https://www.xilinx.com/support/documentation/data sheets/ds890-
ultrascale-overview.pdf, accessed: 2020-1-12.

[2] “Intel Stratix 10 Dx Product Table,” https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-dx-product-
table.pdf, accessed: 2020-1-12.

224

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00055

