
MeXT-SE: A System-Level Design Tool to
Transparently Generate Secure MPSoC

Md Jubaer Hossain Pantho
University of Florida, Gainesville, USA

mpantho@ufl.edu

Christophe Bobda
University of Florida, Gainesville, USA

cbobda@ece.ufl.edu

Abstract—This paper presents the MeXT-SE (Multiproces-
sor Exploration Tool with Security Extension), an FPGA-
based MPSoC development tool capable of generating platform-
independent MPSoCs with enforced hardware access control
mechanism from a high-level abstraction.

I. MEXT-SE:DESIGN FLOW

Figure 1(a) illustrates the design flow of our MeXT-SE

tool. The tool starts with a user-defined abstract and concrete

representation of a system and ends up generating a final

hardware design with enforced countermeasures for prevent-

ing unauthorized access of hardware IPs in the SoC. The

user-defined specifications include the number of processors,

memory size, hardware IPs, operating system, target device,

etc. The tool uses this knowledge to generate the appropriate

hardware design by setting up the communication structure

of different components. While setting up the communication

User Spec

 Design Abstract.2

Sys. Description3

Generated SoC5

Component
Interconnect

Flask Security

Vendor Tool Chain4

Vendor Info+
+
+

OS Image Device driver

Logic Synthesis

Place & Route

No of Processor
Memory, IP-core

Software Env. Generation

Hardware
Kernel
Library

Third
Party IP

1(a) (b)

(c)

Fig. 1. (a) MeXT-SE Design Flow. (b) Generated Secure SoC. (c) Computa-
tion Overhead

network, an access control mechanism that inherits MAC-

based authentication policies, found in the flask security

architecture, is enforced directly in the hardware design [1].

Abstract specifications produced by MeXT-SE are generic and

can be used for the implementation of different MPSoCs,

regardless of the technology. The final script generated at the

end of step 4 (Figure 1(a)) comprises concrete specifications.

It can be invoked within a vendor toolchain (Vivado, Quartus,

etc.) to generate the final bitstream of the secure SoC. Besides,

MeXT-SE provides mechanisms to generate the appropriate

device drivers for the IP cores with flask security enforced.

The flask security framework is implemented as a decen-

tralized hardware/software architecture with the Hardware IP

Management Module (HIMM) governs access control at the

IP level, while the Software IP Management Module (SIMM)

manages policies inheritance of security contexts and queries

the host kernel security server for associated permissions

(Shown in figure 1(b)).

The HIMM consists of an internal enforcement function

and an Access Vector Cache component (AVC) to cache the

last queries and ensure that policies check are handled locally.

Each HIMM maintains a map of security context labels for

the corresponding hardware module it manages. It implements

a custom circuit, the “Access Enforcement Function,” which

guards access to the hardware modules according to the host

kernel MAC policy. Upon receiving an access request to the

hardware module, the SIMM module on the host CPU queries

the host kernel security server for associated permissions.

The server consults its MAC policy and returns associated

permissions, which are then sent to the respective HIMM

module for future access requests.

II. RESULTS & CONCLUSION

We tested the feasibility of our approach by generating

reconfigurable hw/sw designs for Xilinx FPGAs. The results

suggest that the added isolation framework contributes little

to the performance overhead of the generated SoC. The

comparison of computation time for three different designs

is shown in figure 1(c).

MeXT-SE enables FPGA-accelerators to inherit at run-time,

software security policies of the processes calling them. This

capability allows system security enforcement mechanism to

propagate access control privilege boundaries expressed at the

kernel level, down to individual IP. The work was supported

by Air Force Research Lab & MIT Lincoln Lab.

REFERENCES

[1] P. Loscocco and S. Smalley, “Integrating flexible support for security
policies into the linux operating system,” in Proceedings of the FREENIX
Track: 2001 USENIX Annual Technical Conference. USA: USENIX
Association, 2001, p. 29–42.

216

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00047

