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Abstract—With the aid of few directives and canonical forms, 
high-level synthesis (HLS) tools allow FPGA developers to 
describe their hardware designs in higher-level languages such as 
C or C++, thus enabling software engineers to exploit the powerful 
capabilities of FPGA-based accelerators. Hardware engineers 
may also benefit from automated RTL generation through HLS, 
as it can boost their productivity with shorter development cycles 
and simpler validation processes. However, the introduction of 
automation with its associated performance losses brings the 
viability of the current HLS-based approach into question: are we 
sacrificing the main advantage of FPGA designs, namely their 
performance, in return for higher productivity? This paper 
examines the performance-per-power penalties incurred in HLS 
designs in the context of stencil computations for fluid flow 
simulations, a prevalent class of applications that are difficult to 
accelerate because of their low arithmetic intensity. By using 
Xilinx’s Vivado HLS tool to replicate a hand-crafted RTL 
implementation of a solution of Laplace's equation, this paper 
evaluates the impact of implicitly expressing parallelism, 
particularly if specific optimizations are not directly supported by 
the tool. In addition, by describing scenarios in which the HLS 
approach does and does not excel for stencil-based computations, 
this paper offers insights to assist hardware engineers in setting 
their expectations of the HLS approach and suggests alternative 
techniques to accomplish common tasks that fail or underperform 
using typical approaches. 

I. INTRODUCTION  
Hardware accelerators have emerged as mainstream 

computing platforms, with leading technology providers such as 
Microsoft [1], Google [2], and Amazon [3] including GPUs and 
FPGAs as part of their cloud service offerings. GPUs, in 
particular, are widely adopted because of their lower entry 
barrier and superior power/performance rating compared with 
CPUs. However, they are reaching their power limit [4] and their 
performance is often capped to conserve energy and prevent 
overheating, consequently wasting valuable computational 
resources and maxing out power sources. In addition, GPU 
performance is often impeded by limited memory bandwidth, 
especially in applications with low arithmetic intensity [5], 
where little computation is performed per byte of data retrieved. 

With a powerful combination of large on-chip memory and 
highly-customizable designs, FPGAs hold the potential to 
provide acceleration where GPUs prove lacking. By leveraging 
the generous on-chip memory, FPGA clusters can accommodate 

entire datasets on-chip, eliminating frequent data loads and 
reloads from off-chip memory and alleviating the memory 
bandwidth bottleneck that limits GPU performance. 
Additionally, the flexible design of FPGAs optimizes energy 
consumption through hand-crafted, highly-customized designs.  

However, despite FPGA’s promising ability to surmount the 
two most pressing limitations of GPUs, namely, limited memory 
bandwidth and high power consumption, the introduction of 
FPGA-based solutions has been slow owing to the cumbersome 
implementation efforts involved in FPGA designs. Contrary to 
GPUs that employ high-level languages, FPGA development 
leverages hardware description languages (HDL) such as 
Verilog or VHDL. These languages describe parallel 
functionality at low levels of abstraction, where timed 
operations must be meticulously specified and tested for register 
transfer level (RTL) designs using elaborate verification 
processes. This slow time to market welcomed the advent of 
high-level synthesis (HLS) tools [6], which reduce FPGA 
development cycle times through automated translation of 
higher-level code, such as C or OpenCL, to RTL. Moreover, by 
utilizing commonly-used high-level languages, HLS also 
enables software developers with little to no hardware 
knowledge to take advantage of the powerful capabilities of 
FPGAs. 

Nevertheless, with the adoption of high-level methodologies 
such as HLS, the main advantages of FPGA-based solutions 
may be lost and a healthy dose of skepticism is called for. Two 
questions in particular arise with the introduction of automation: 
first, how much performance, power, and hardware resources 
are we losing in exchange for improved productivity? Second, 
is this price worth the return?  

In the context of stencil computations [7], a class of 
applications with low arithmetic intensity that requires data 
accesses from nearest neighbors only, this paper attempts to 
answer the former question with the objective of empowering 
researchers and engineers to answer the latter, based on their 
specific applications and priorities. In this paper, we investigate 
the ability of Xilinx’s Vivado HLS tool to adequately and 
efficiently describe a hardware design, and the extent to which 
it can offer developers flexibility and control over the desired 
optimizations. For situations where the HLS tool proves lacking, 
we also suggest methods to overcome the limitations of the tool 
and offer insights to help developers set reasonable expectations. 
To achieve these goals, a highly-optimized RTL application was 
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developed and then replicated using HLS. Both implementations 
were then compared in terms of speed, power, and resource 
utilization.  

II. BACKGROUND AND RELATED WORK 
FPGA vendors have long recognized the productivity 

challenge associated with developing RTL designs and have 
sought to alleviate it by supplementing their development tools 
with soft processors and IP cores that hide complexity and 
enable design reuse. HLS tools go a step further towards this 
goal by using high-level languages to abstract away 
implementation details, offloading the tedious task of RTL 
coding to automated tools. With such potential for a 
breakthrough in FPGA development, the introduction of HLS 
tools resulted in numerous studies describing their limitations 
and challenges [8-10].  

A. High Level Synthesis 
While there is a plethora of academic and commercial HLS 

tools with the universal goal of automated RTL generation, these 
tools vary in their approaches and input languages [11]. In this 
paper, we limited our study to Xilinx’s Vivado HLS tool [12] 
where developers only need to complement their high-level 
programs with pragmas and Xilinx’s canonical forms to guide 
the tool in its automated translation to low-level parallel 
descriptors for efficient designs. This approach is not unique to 
Vivado HLS, and is adopted by other, commonly used HLS 
tools such as Altera’s HLS Complier [13] and Mentor Catapult 
[14].  

Studies that tackled HLS as a means of exposing hardware 
accelerators to software developers demonstrated tremendous 
performance gains that could easily justify the additional 
learning curve. For example, compared to software 
implementations, speedups of 67×, 126×, and an astounding 
8500×, were achieved in stereo matching [15] embedded 
benchmark kernels [16], and error correction codes [17], 
respectively. Applications gaining modest speedups of three to 
nine times the software performance [18-20] were also 
considered satisfactory, particularly when the reference software 
implementations are the highest-performing implementations 
available. For hardware engineers, however, the trade-off is 
reversed; RTL designs can be extremely efficient, and their main 
drawback is prolonged development time. Although hardware 
engineers are undoubtedly interested in improving their 
productivity, they may not be willing to give up the high 
performance they are accustomed to, and therefore recommend 
confining the use of HLS to design-space explorations [21], and 
not production-grade FPGA designs. 

 Nevertheless, numerous efforts have been made to evaluate 
the performance of HLS implementations compared to RTL 
designs in various domains, and results depended heavily on the 
application. For example, a Memcached server application [22] 
benefited from the accelerated development cycle of HLS, 
reaping tangible gains in both performance and resource usage 
at 35% and 30%, respectively. On the other hand, applications 
in nuclear science [23] suffered drastically as their resource 
usage doubled and their performance halved. More common in 
HLS implementations, however, is a detachment of resource 

savings from performance gains. Under HLS, applications such 
as image processing [24] and arithmetic units achieved roughly 
the same performance as the corresponding RTL 
implementations, at the expense of increased resource usage of 
up to 100%. Also, an HLS implementation of a RADAR signal 
processing algorithm [25] achieved a speedup of two, at the cost 
of a fourfold increase in resource usage, compared to RTL. 
Resource usage does not always suffer under HLS, however. In 
the cryptography domain [26], for example, throughput dropped 
by 47% in the HLS implementation compared to RTL, while 
resource saving reached 22%. An HLS implementation of K-
means clustering [27] also suffered a degraded performance of 
50% at the same resource usage level as the RTL. It must be 
noted, however, that increased usage of one resource may come 
in tandem with a decrease in another. For example, logic 
consumption may be accompanied with increased use of BRAM 
[28-29], and increased lookup-table usage may occur with a 
decrease in flip-flop usage [30], making it difficult reach a final 
verdict on the effect of HLS on the application’s resource 
utilization. 

Another factor that goes into the evaluation of the HLS 
approach is the productivity improvements it offers over the 
traditional RTL approach. Yet, measuring productivity in this 
context can be quite challenging [30]. Often, comparing two 
approaches involves a learning curve in one approach but not the 
other, and the first approach pursed in the comparison incurs the 
cost of additional activities such as initial design decisions and 
optimization details. Having said that, several works have cited 
HLS development time to be about one- to two-thirds that of 
RTL [19,22,24-25], although it can be five times lower [31]. 

The third factor in evaluating the HLS approach is power 
consumption, which is seldom discussed in such studies despite 
its direct impact on the total cost of ownership of the final 
product.  

In summary, with productivity being difficult to measure, 
and the performance and resource utilization depending on the 
application, drawing conclusions on the general cost-benefit 
analysis of the HLS approach can be quite challenging. In fact, 
even for the same domain and application, HLS designs can vary 
in terms of performance and resource usage depending on the 
adopted architecture [32]. Moreover, the choice of HLS tool 
directly affects the efficiency of the generated RTL description 
[33-34], a topic that is outside the scope of this paper. 

B. Stencil Computation 
In this study, we focus our attention on stencil computation, 

a class of applications that process multi-dimensional arrays, 
updating the value of each array cell by using the values of its 
nearest neighbors. These neighboring cells are determined by 
the stencil, a fixed pattern that defines the neighborhood of any 
given cell. For example, in a two-dimensional matrix, a five-
point stencil includes the center cell, in addition to the four 
orthogonal neighbors of a cell, namely the top-, bottom-, left-, 
and right-neighbor cells. A nine-point stencil, on the other hand, 
also includes the four diagonal neighbors. Thus, the fundamental 
idea of stencil computations can be extended to neighbors of 
neighbors. Because several neighboring cells are required to 
compute a single cell value, and the number of operations is not 
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very significant, stencil computations have low arithmetic 
intensity and consequently high bandwidth requirements. On the 
other hand, stencil computations are inherently parallel, given 
that each cell can be updated concurrently, and that the access 
of only immediate neighbors can lead to high data locality. 

We choose to solve Laplace’s equation ( ) using a 
five-point stencil and a Jacobi iteration scheme, a common 
algorithm that is similar to stencil-based operations used in 
many scientific computing applications. Implemented in a two-
dimensional uniform grid, the algorithm marches through a 
series of iterations, producing an output matrix from an input 
one by averaging the neighbors of each inner cell, as shown in 
figure 1. The boundary cells of the matrix remain unchanged and 
can be updated using a simple copy. However, by initializing 
input and output matrices to the same values, the copying step 
can be eliminated, and boundary cells are simply skipped. Input 
and output matrices are swapped at the end of each timestep, and 
the loop goes on until the two matrices converge in an 
appropriate error norm. Computation is performed using double 
precision floating-point variables, and convergence is 
determined by comparing the mean squared error to a user-set 
tolerance.  

III. DESIGN 
To exploit the algorithm’s locality, we designed our solution 

to employ multiple parallel processing elements (PEs), each of 
which processes a submatrix of 16 rows and 256 columns. PEs 
operate independently within a timestep, but not across 
timesteps because the convergence check performed at the end 
of each iteration is needed before proceeding to the next 
timestep, and it cannot be performed until all PEs have finished 
processing the current timestep. In addition, the border cells at 
the edges of each submatrix will have to obtain one of their four 
neighbors from an adjacent PE, and synchronization is necessary 
to ensure the retrieval of the updated value. Such cells are 
referred to as “halos” or “halo cells”, and their efficient and 
timely exchange is a crucial factor in high-performing 
implementations. For a simple and efficient exchange of halo 
cells between PEs, PEs are stacked vertically to limit halos to 
top and bottom PE rows. PEs are wrapped in a top-level Engine 
module that controls the time-stepping through convergence 
checks. 

 
(a) 

 
(b) 

Fig. 2. Basic design uses two passes for a throughput of three cycles. (a) 
First pass takes two cycles to pass the four neighbors from input BRAM 
Controller to averaging module. (b) Second pass computes error every cycle   

 

Each PE is composed of a BRAM controller module that 
manages the input and output matrices, an averaging module 
that computes the new value of each cell, and an error module 
that computes the PE’s accumulated error. As shown in figure 2, 
the basic operation of a PE involves traversing the input matrix 
twice in each timestep. In the first pass, the four neighbors of the 
target cell are retrieved from the input BRAM controller and 
passed to the averaging module. Once the computed value is 
ready, it is passed from the averaging module to the output 
BRAM controller for storage. In the second pass, the original 
value residing in the input matrix and the newly-computed value 
stored in the output matrix are passed to the error module and 
the final accumulated error is then forwarded to the Engine 
module for the convergence check, based on the total error 
computed by all PEs.  

A. HDL Implementation 
The pipelined HDL design achieves high performance by 

pursuing several optimization directions. First, an ideal PE 
throughput of one cell update per cycle is achieved by removing 
memory bottlenecks. Next, runtime is reduced by eliminating 
control overheads in the management of both timesteps and 
halos. Finally, through efficient use of hardware resources, the 
FPGA can accommodate more PEs for higher computational 
power. Table 1 lists the six optimization techniques carried out 
in the HDL implementation, along with their resulting impact on 
performance. Moreover, a description of each optimization 
technique is detailed below.  

 BRAM Partitioning: In the first pass, the averaging module 
needs to access four neighbors while BRAM blocks support 
only two ports, leading to a module throughput of two cycles per 
cell update. By observing the predefined access pattern, 
however, we notice that the four accesses performed by the 
averaging function require only two cells of the same parity. As 
such, by partitioning the PE’s  BRAM  memory into two blocks 

while (error > tolerance) { 
  running_diff = 0   
  Loop from i=1 to i=rows{ 
    Loop from j=1 to j=columns{ 
      if ( in_matrix(j,i) is boundary cell){ 
        out_matrix(j,i)=in_matrix(j,i)  
      } 
      else{ 
        sum = in_matrix(j+1,i) + in_matrix(j,i+1)  
            + in_matrix(j-1,i) + in_matrix(j,i-1) 
        out_matrix(j,i) = sum/4 
      } 
      diff = (out_matrix(j,i) - in_matrix(j,i))^2 
      diff_sum +=diff 
    }     
  }   
 
  error = sqrt(diff_sum / size);  
  swap (in_matrix, out_matrix); 
} 

Fig. 1. Pseudo-code listing of the implemented algorithm. 
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Fig. 3. The BRAM Controller in the optimized HDL implementation uses two BRAM blocks. In the current cycle, neighbors a,b,c, and d of the target cell x are 
simultaneously passed to the averaging module. The right neighbor, b, is also buffered into a FIFO. Similarly, in the previous cycle, x was buffered when the 
neighbors of a were retrieved. After 29 cycles, the averaging module produces y, the updated value of x. Both x and y are then passed to error module. 

 

and using the cells’ parity bit to index into the BRAM blocks, 
all four neighbors can be retrieved in one cycle, without conflict 
and with minimal overhead. Thus, by effectively doubling the 
memory ports, the throughput of the averaging module is 
improved to one cell update per cycle. 

 One-pass Processing: To achieve a PE throughput of one 
cell update per cycle, the two passes must be fused such that a 
PE traverses its matrix only once per timestep. Consequently, 
the PE must be able to perform up to five memory reads in any 
given cycle, because the pipelined nature of the RTL design 
must allow for the averaging and error computation steps to 
occur simultaneously as part of different pipeline stages. Further 
BRAM partitioning does not offer an efficient solution for the 
fifth access needed for the error computation, as it would 
introduce complex access management to avoid conflicting 
accesses. Alternatively, the data access pattern is exploited by 
observing that the right neighbor of the current cell will be the 
target cell in the next cycle, which is the same value to retrieve 
for computing the error of the next cell once its output is 
available. As shown in figure 3, by buffering the right neighbor 
of every cell until the output of its next cell is computed, we 
eliminate the need for a fifth memory access altogether. Because 
the averaging module has a latency of 29 cycles, a small, 
register-based FIFO of 32 entries is used to hold the right 
neighbors until the corresponding output is available. 

 Seamless Halo Exchange: By exploiting the lockstep nature 
of PE execution, PEs can access halos as if they were local 
neighbors instead of exchanging halos in a separate, prior step 
in each iteration. This is possible because cells at the PE border 
use only three out of four available BRAM ports, so the fourth 
port can be used to service a halo to an adjacent PE, as illustrated 
in figure 4.  

 Back-to-back Iterations: The total runtime can be further 
reduced by running timesteps back to back, assuming that the 
matrices have not converged yet. Thus, instead of waiting for the 
convergence test results after a timestep completes, the next 

timestep starts immediately in parallel with the error 
computation for the convergence check. If convergence is 
achieved, the timestep is aborted and the input matrix, rather 
than the output one, is returned. 

 Optimizing FP Division: The number of hardware resources 
can be reduced by substituting the expensive division by 4.0 
operation with the cheaper multiplication by 0.25 operation. 
However, a greater resource saving would take advantage of the 
FPGA’s ability to manipulate data at the bit level and transform 
floating-point operations into integer operations. By observing 
that a floating-point division by 4.0 simply reduces the floating-
point number’s mantissa by 2, the floating-point division is 
replaced with a decimal subtraction operation, thereby releasing 
10 DSP slices per PE. 

 Optimizing FP Accumulation: Taking advantage of the small 
data size of each PE, we decreased resource utilization by 87% 
through configuring the floating-point accumulator to minimal 
resource usage. This does not affect the accuracy of the results 
because the accumulator is only used for the convergence test, 
and in the worst-case scenario the accumulator would introduce 
a rounding error of 2 53 for each of the submatrix’s 4,096 cells, 
totaling to a negligible sum for a typical tolerance of 10 6. 

TABLE I.  OPTIMIZATION TECHNIQUES USED IN HDL 

Optimization Benefit Compared to HDL Baseline 

BRAM partitioning  Speedup of 1.33×  

One-pass Processing Speedup of 1.33× 

Seamless halo exchange Speedup of 1.11× 

Back-to-back iterations Speedup of 1.03× 

Optimizing FP ivision Reduction of DSP utilization by 26%  

Optimizing FP accumulation Reduction of logic utilization by 87%  
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Fig.  4. Border cells retrieve their halo values from adjacent PEs as if they 
were local. PEs operate in lockstep, so the addresses of x, y, and z, are 
identical. PE 2 receives its bottom halo, d, from PE 3, as it passes h to PE 1. 

 

B. HLS Implementation 
A naïve HLS implementation was also written in C. A top-

level Engine function includes a main loop that iterates through 
timesteps and places several calls to the PE function in each 
iteration, before checking for convergence using the running 
difference sums returned by the PE function calls. Because PEs 
are implemented as functions, submatrices are placed within the 
Engine, not within each respective PE. Each PE receives 
pointers to the input and output submatrices, in addition to 
pointers to the submatrices of other PEs where halos reside. 

Using this naïve implementation, two problems arise. First, 
a simple pointer swap to alternate between the two submatrices 
is not possible, because pointers-to-pointer are not allowed, and 
pointers must be statically assigned. Second, having two 
functions access the same array is not permissible, even if the 
two functions do not alter the array’s data. This is the case when 
a PE is reading its input submatrix and another PE is reading the 
same submatrix to access its halos. To resolve this issue, 
dedicated halo arrays are created to host duplicate copies of the 
halo cells, and these arrays are passed to PE functions instead of 
adjacent submatrices, as shown in figure 5. Similar to the 
double-matrix approach, each PE has two halo arrays, one for 
the input and another for the output, and a new function is 
introduced for initial loading of halos. The performance cost of 
this function, however, is negligible as it is only run once.  
Although the halo-array approach incurs additional memory 
usage, it is unavoidable for successful code generation. As for 
matrix swapping, PE calls are duplicated and hardcoded with the 
two possible combinations of pointer arguments, and a 
conditional statement is used to choose the appropriate call 
based on the iteration’s parity, also shown in figure 5.  

By solving these issues, the baseline HLS implementation 
successfully generated RTL code, albeit showing very poor 
performance. This degraded performance was mainly caused by 

the absence of floating-point accumulators in HLS, and the use 
of floating-point binary adders instead. The problem with using 
adders for accumulation is the self-dependency of the adder’s 
inputs on its outputs: the output of the current addition is an input 
for the next one and, therefore, each addition operation must be 
completed before starting the next. This means that pipelining is 
not possible and given the adder’s eleven-cycle latency, 
processing a submatrix will take at least eleven times its size (in 
clock cycles) to complete one timestep. To improve 
performance, Xilinx recommends accumulating the values by 
cyclically distributing them over several adders, allowing a 
minimum of eleven cycles to elapse before any adder receives 
its next accumulation input [35]. As shown in figure 6, each 
adder maintains a partial sum, and these are also added up using 
a tree adder once the submatrix processing is complete.  

As listed in table 2, optimization techniques used in the HDL 
version were adopted in the HLS implementation, where 
applicable. BRAM blocks were partitioned to increase memory 
ports by using pragmas, and reuse of the right neighbor through 
buffering was also implemented but without the explicit use of 
a FIFO. Instead, as the PE iterates through its cells, the right 
neighbor is cached in a variable and used in the next iteration by 
the next cell. To facilitate pipelining, HLS internally instantiates 
a FIFO to hold this value until the output of the next cell is 
available.  

Resource reduction techniques used in the HDL version 
were not applicable to the HLS implementation and could not be 
replicated. In particular, converting floating point division to 
integer addition was not performed because bit manipulation is 
not easily accessible using high-level languages, and defeats the 
purpose of a using high-level language. As for accumulator 

double add_all(double x[32]) {  
  double acc_part[4] = {0.0, 0.0, 0.0, 0.0};    
  for (int i = 0; i < 32; i += 4){// Manually unroll by 4
    for (int j = 0; j < 4; j++){// Partial accumulations 
      acc_part[j] += x[i + j];    
    }   
  } 
  for (int i = 1; i < 4; i++) {// Final accumulation    
     acc_part[0] += acc_part[i]; 
  }    
  return acc_part[0];  
} 

Fig. 6.  Example code describing the implementation of accumulators using four 
partial adders for higher throughput in Vivado HLS. Adapted from [38]. 

load_halo(matrix_in, halos_in); 
 
iteration_count = 0; 
acc_error = 0; 
 
while (error > tolerance) { 
  if (iter_count %2 == 0){ 
    err = PE(matrix_in, matrix_out, halos_in, halos_out);
    acc_error += err; 
  } else {  
    err = PE(matrix_out, matrix_in, halos_out, halos_in);
    acc_error += err; 
  } 
 
  iteration_count++; 
}

Fig. 5.  Pseudo-code for hardcoded PE function calls in HLS implementation.

199



optimizations, these were not applicable because adders were 
used instead. In fact, excessive use of resources to implement 
partial sums was necessary to overcome the adders’ latency 
when used as accumulators.   

Finally, runtime could not be further reduced through back-
to-back execution of timesteps because loop-pipelining requires 
unrolling of all internal loops, which is not feasible. As for 
optimizing halo management, the design was refined to utilize 
custom PE implementations that process halos depending on the 
PE’s position: First PE, which uses a bottom halo, Last PE, 
which uses a top halo, or Middle PE, which uses both halos. 
Consequently, the latency overhead of halo management was 
minimized, but the double-buffering of halos and the associated 
memory usage could not be improved.  

TABLE II.  APPLIED OPTIMIZATIONS 

Optimization HDL HLS 

BRAM partitioning    
One-pass processing   
Seamless halo exchange   
Back-to-back iterations   
Optimizing FP division   
Optimizing FP accumulation   

 

IV. EVALUATION 
The performance of FPGA designs largely depends on the 

resources available on the FPGA. Thus, we proceed with a 
review of the experimental setup before evaluating the two 
designs. 

A. Experimental Setup 
Both the HDL and HLS implementations were developed 

using Xilinx technologies, which were selected because of their 
support of double-precision floating-point operations. The board 
used was Nexys 4, a low-cost FPGA evaluation board equipped 
with Xilinx Artix-7 100T [36] with limited resources, as shown 
in table 3. The HDL model was developed using Xilinx Vivado 
2018 and Floating-Point Operator v7.1 LogiCORE IP for 
double-precision floating-point operations, and Clocking 
Wizard v5.4 LogiCORE IP for automated clock creation. The 
HLS version used HLS Vivado 2018, and the packaged IP was 
wrapped in a top-level module in Xilinx Vivado 2018 for 
implementation on the actual FPGA. Power measurements for 
both implementations were provided by the same tool. 

 

TABLE III.  FPGA RESOURCES 

Resource Count 

Lookup-tables (LUTs) 63,400 

Flip-flops (FFs) 126,800 

DSP Slices 240 

BRAM Blocks (18 Kbits) 270 

B. Results and Analysis 
Inadequate support of floating-point accumulators proved to 

be particularly problematic for the HLS implementation. The 
use of adders and partial sums introduced higher latencies to 
tally up the partial sums, and increased resources because of the 
array that holds the partial sums, the adders for each partial sum, 
and the tree adder used for the final summation. Excessive use 
of BRAM is another concern, with partial sums using eight 
blocks for storage and the HLS tool instantiating four blocks per 
PE to facilitate efficient implementations. 

To implement pre-fetching of right neighbors, the tool used 
a BRAM-based FIFO internally to buffer the values. This raised 
BRAM usage by either six or ten blocks per PE, depending on 
the PE’s position, whether it had one or two halo edges, 
respectively. Compared with the 32 registers used in the HDL 
implementation regardless of PE position, this excessive use of 
BRAMs suggests the tool’s poor efficiency with regard to 
complex control logic. This conclusion is in alignment with the 
findings of Sharafeddin et al., in their evaluation of HLS’s 
effectiveness in accelerating MapReduce functions [37]. They 
observed that while improvements in either data flow or control 
flow designs are possible using HLS, combining both in the 
same design can be challenging for the tool and is likely to result 
in degraded performance, particularly when floating-point 
operations are involved.  

As shown in table 4, this inflated use of resources allowed 
the design to accommodate merely four PEs in the HLS 
implementation, as opposed to eight PEs in the HDL version. 
Although this lower PE count led to smaller resource 
consumption in total, the HLS implementation suffered from a 
slower clock, suggesting a poor underlying RTL description. In 
addition, the HLS version endured long iteration delays given its 
inability to pipeline the main loop, leading to low PE utilization. 
With a combination of faster clock, larger PE count, and higher 
PE utilization, the HDL implementation performed over 47,000 
iterations per second at 2.1 watts, compared with the HLS 
version with only 33,000 iterations per second and merely 0.1 
watts less power. As such, the HDL version achieved more than 
double the cell updates per watt compared with HLS. Results in 
both implementations were bit-wise identical to that of a 
reference software solution developed in MATLAB. 

TABLE IV.  PERFORMANCE RESULTS 

Version
Usage % Freq. 

MHz PEs PE 
Utilization

Million Cell 
Updates / WattLUT FF DSP BRAM 

HDL 89 70 96 95 200 8 98% ~ 740 

HLS 73 48 89 68 166 4 82% ~ 270 

 
C. Observations  

Some studies [33-34] have found Xilinx’s Vivado HLS to 
require more hardware knowledge than other HLS tools, which 
suggests that it offers higher control over the generated RTL 
design. Yet, the difficulty in describing a parallel system using 
a sequential language is inescapable. Not only does it not come 
naturally, but it also introduces design limitations that prevent 
optimal performance.  
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In theory, pragmas facilitate parallel design descriptions and 
allow for flexible implementations and improved performance. 
But in reality, they are of limited benefit given their many use-
case restrictions. For example, the dataflow directive could be 
used to facilitate a loop pipeline, reducing runtime by allowing 
timesteps to run back-to-back. However, because halo arrays are 
written to and from by more than one PE function call, the main 
loop does not conform to the canonical form required by the tool 
to infer pipelined behavior. Even if the functions were 
transformed into the canonical form, pipelining would not be 
allowed because the PE functions return their running difference 
sum, which is not permissible when using the directive unless it 
is a top-level function.  

Without explicit means to define parallelism, the tool must 
adopt a conservative approach to safely detect parallel 
operations without jeopardizing correctness. Often, the tool 
falsely detects data dependencies and assumes serial execution, 
without responding to pragmas or offering other tips for 
improving performance as it cannot recognize the parallelism to 
begin with. This inability to specify parallelism explicitly, and 
failure to detect it implicitly, may come at a high cost. For 
instance, the tool’s inability to run PEs in parallel when reading 
from the same submatrix led to the introduction of halo arrays, 
a steep price in terms of memory usage.  

Additionally, the reliance on the tool to infer desired 
behavior may produce an unexpected outcome that is difficult to 
rationalize. For instance, before the main loop, halos load in 
parallel if there are no PE calls in the main loop, and PEs execute 
in parallel if there are no halo loading calls. However, if both 
calls are placed, halo loading is serialized, and yet, dedicated 
resources are allocated for each call. The serialization of halo 
loading is puzzling because all halos should and do complete 
loading before running the PEs, and their execution is 
independent of each other. If the tool rightfully serialized the 
calls, then how was it able to run them in parallel when PE calls 
were not present? And if it wrongfully did so, then why would 
it duplicate resources for parallel execution, and then run the 
calls sequentially? Although there might be a good explanation 
that escapes the developer, it is not immediately obvious, and it 
takes time and effort to experiment with various scenarios to 
elicit behavioral patterns that could help rationalize such 
behavior. This point bears emphasis, as hardware engineers 
adopting HLS as a time-saving tool may end up spending a 
significant amount of time, up to several days if not weeks, 
trying to understand the tool’s refusal to behave as desired. 
Developers may ultimately succeed in conjuring up a maneuver 
that steers the tool into desired behavior, but this is not always a 
trivial task, and it is likely to render the code harder to 
understand and maintain.  

Having said that, the tool seems to manage resources quite 
efficiently when pragmas, not manual manipulation, are used to 
achieve desired behavior. For example, inlining halo loading 
functions used fewer resources than hand-crafted functions, 
designed to reuse idle buffers to cut memory usage in half.  

V. RECOMMENDED PRACTICES 
Development time using Vivado HLS can be considerably 

reduced with improved understanding of the tool’s limitations, 

and recognition of common tasks and usage scenarios that are 
affected by these limitations. To this end, following are some 
design techniques that proved of repeated benefit. 

 Dynamic Arguments: HLS prohibits dynamic assignment of 
pointers because hardware designs often have several memory 
spaces, and the tool must know which memory space the 
function intends to access so it can place wire connections 
accordingly. One way to pass function arguments dynamically 
is to introduce a layer of indirection by statically defining all 
possible function calls and hardcoding the arguments for each, 
then dynamically selecting the correct call using a conditional 
statement. An example is illustrated in the pseudo-code listing 
in figure 5. 

 Parallel Execution: To ensure correct execution, HLS 
prevents functions accessing the same array from running in 
parallel.  With the absence of support for constant parameters, 
this includes read-only functions as there is no way to classify 
them as such. Arrays must be split or duplicated, or functions 
must be merged to enable parallel execution. 

 Memory Over-allocation: There are two ways to synthesize 
large arrays into a chain of multiple BRAM blocks. First is width 
expansion, which distributes word bits across multiple BRAM 
blocks, activating several blocks simultaneously with each 
memory access which uses up power. Second is depth 
expansion, which stores full words in each block and employs a 
multiplexer to activate one block per memory access at the 
expense of extra logic and delay. To enable high-performing 
designs, HLS seems to favor width expansion which can lead to 
prohibitive BRAM usage, particularly when words are very 
wide and blocks are not fully utilized. As such, splitting large 
arrays into smaller ones that fully utilize BRAM blocks can 
drastically reduce memory usage.      

 Resource Reuse: The most efficient way to serialize 
execution and reuse logic is by extracting common logic in an 
inlined sub-function. Conversely, turning the inlining off 
duplicates resources and enables parallel execution, although 
this doesn’t always succeed. A sure-but-less-convenient way to 
ensure parallel execution is to replicate the functions and rename 
them differently. Granted, this approach makes the code harder 
to maintain, but in some cases it may be inevitable. 

 FP Accumulators: With the absence of floating-point 
accumulation support, the most efficient way to implement 
accumulation is using partial sums and tree adders, as described 
in the pseudo-code listing in figure 6. 

VI. CONCLUSIONS 
In this paper, we evaluated the efficiency of Xilinx’s Vivado 

HLS tool compared to the traditional HDL approach in the 
context of stencil computations, a class of applications that are 
difficult to parallelize given their low arithmetic intensity and 
high memory bandwidth requirements. For each approach, we 
described a parallel, highly-optimized FPGA design solving 
Laplace’s equation, using a five-point stencil and a Jacobi 
iteration scheme. Analyzing the results, we found the HLS 
implementation lacking in terms of performance and resource 
usage, with performance-per-power reaching merely 36.4% that 
of the HDL implementation.  
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While the Vivado HLS tool demonstrated excellent reuse of 
logic resources with minimal overhead, it underdelivered with 
respect to complex control and memory allocation. Therefore, it 
may be concluded that an ideal approach would combine the use 
of HLS code for computationally intensive portions, with hand-
crafted HDL implementations for logic control and memory 
management. However, when memory management and control 
logic are the most complex and time-consuming portions of the 
application’s implementation process, as is the case in this study, 
a hybrid method might not add much value compared with a 
pure HDL design. Furthermore, in such method, the HDL 
modules would be treated as a black box within the HLS design, 
hindering the tool’s efforts to reuse resource consumed by the 
HDL modules.  

Either way, HLS introduces its own set of challenges as it 
shifts the developer’s attention and effort from design and 
testing to pondering the tool’s unexpected behavior, speculating 
why the tool is allocating so many resources or incurring so 
much latency. As such, developers are advised to set their 
expectations accordingly, and incorporate ample time for 
optimizations in their project planning.  
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