

Investigating Performance Losses in High-Level
Synthesis for Stencil Computations

Wesson Altoyan
Department of Electrical Engineering

Stanford University
Stanford, CA, U.S.A.

waltoyan@stanford.edu

Juan J. Alonso
Department of Aeronautics and Astronautics

Stanford University
Stanford, CA, U.S.A.
jjalonso@stanford.edu

Abstract—With the aid of few directives and canonical forms,
high-level synthesis (HLS) tools allow FPGA developers to
describe their hardware designs in higher-level languages such as
C or C++, thus enabling software engineers to exploit the powerful
capabilities of FPGA-based accelerators. Hardware engineers
may also benefit from automated RTL generation through HLS,
as it can boost their productivity with shorter development cycles
and simpler validation processes. However, the introduction of
automation with its associated performance losses brings the
viability of the current HLS-based approach into question: are we
sacrificing the main advantage of FPGA designs, namely their
performance, in return for higher productivity? This paper
examines the performance-per-power penalties incurred in HLS
designs in the context of stencil computations for fluid flow
simulations, a prevalent class of applications that are difficult to
accelerate because of their low arithmetic intensity. By using
Xilinx’s Vivado HLS tool to replicate a hand-crafted RTL
implementation of a solution of Laplace's equation, this paper
evaluates the impact of implicitly expressing parallelism,
particularly if specific optimizations are not directly supported by
the tool. In addition, by describing scenarios in which the HLS
approach does and does not excel for stencil-based computations,
this paper offers insights to assist hardware engineers in setting
their expectations of the HLS approach and suggests alternative
techniques to accomplish common tasks that fail or underperform
using typical approaches.

I. INTRODUCTION
Hardware accelerators have emerged as mainstream

computing platforms, with leading technology providers such as
Microsoft [1], Google [2], and Amazon [3] including GPUs and
FPGAs as part of their cloud service offerings. GPUs, in
particular, are widely adopted because of their lower entry
barrier and superior power/performance rating compared with
CPUs. However, they are reaching their power limit [4] and their
performance is often capped to conserve energy and prevent
overheating, consequently wasting valuable computational
resources and maxing out power sources. In addition, GPU
performance is often impeded by limited memory bandwidth,
especially in applications with low arithmetic intensity [5],
where little computation is performed per byte of data retrieved.

With a powerful combination of large on-chip memory and
highly-customizable designs, FPGAs hold the potential to
provide acceleration where GPUs prove lacking. By leveraging
the generous on-chip memory, FPGA clusters can accommodate

entire datasets on-chip, eliminating frequent data loads and
reloads from off-chip memory and alleviating the memory
bandwidth bottleneck that limits GPU performance.
Additionally, the flexible design of FPGAs optimizes energy
consumption through hand-crafted, highly-customized designs.

However, despite FPGA’s promising ability to surmount the
two most pressing limitations of GPUs, namely, limited memory
bandwidth and high power consumption, the introduction of
FPGA-based solutions has been slow owing to the cumbersome
implementation efforts involved in FPGA designs. Contrary to
GPUs that employ high-level languages, FPGA development
leverages hardware description languages (HDL) such as
Verilog or VHDL. These languages describe parallel
functionality at low levels of abstraction, where timed
operations must be meticulously specified and tested for register
transfer level (RTL) designs using elaborate verification
processes. This slow time to market welcomed the advent of
high-level synthesis (HLS) tools [6], which reduce FPGA
development cycle times through automated translation of
higher-level code, such as C or OpenCL, to RTL. Moreover, by
utilizing commonly-used high-level languages, HLS also
enables software developers with little to no hardware
knowledge to take advantage of the powerful capabilities of
FPGAs.

Nevertheless, with the adoption of high-level methodologies
such as HLS, the main advantages of FPGA-based solutions
may be lost and a healthy dose of skepticism is called for. Two
questions in particular arise with the introduction of automation:
first, how much performance, power, and hardware resources
are we losing in exchange for improved productivity? Second,
is this price worth the return?

In the context of stencil computations [7], a class of
applications with low arithmetic intensity that requires data
accesses from nearest neighbors only, this paper attempts to
answer the former question with the objective of empowering
researchers and engineers to answer the latter, based on their
specific applications and priorities. In this paper, we investigate
the ability of Xilinx’s Vivado HLS tool to adequately and
efficiently describe a hardware design, and the extent to which
it can offer developers flexibility and control over the desired
optimizations. For situations where the HLS tool proves lacking,
we also suggest methods to overcome the limitations of the tool
and offer insights to help developers set reasonable expectations.
To achieve these goals, a highly-optimized RTL application was

195

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00034

developed and then replicated using HLS. Both implementations
were then compared in terms of speed, power, and resource
utilization.

II. BACKGROUND AND RELATED WORK
FPGA vendors have long recognized the productivity

challenge associated with developing RTL designs and have
sought to alleviate it by supplementing their development tools
with soft processors and IP cores that hide complexity and
enable design reuse. HLS tools go a step further towards this
goal by using high-level languages to abstract away
implementation details, offloading the tedious task of RTL
coding to automated tools. With such potential for a
breakthrough in FPGA development, the introduction of HLS
tools resulted in numerous studies describing their limitations
and challenges [8-10].

A. High Level Synthesis
While there is a plethora of academic and commercial HLS

tools with the universal goal of automated RTL generation, these
tools vary in their approaches and input languages [11]. In this
paper, we limited our study to Xilinx’s Vivado HLS tool [12]
where developers only need to complement their high-level
programs with pragmas and Xilinx’s canonical forms to guide
the tool in its automated translation to low-level parallel
descriptors for efficient designs. This approach is not unique to
Vivado HLS, and is adopted by other, commonly used HLS
tools such as Altera’s HLS Complier [13] and Mentor Catapult
[14].

Studies that tackled HLS as a means of exposing hardware
accelerators to software developers demonstrated tremendous
performance gains that could easily justify the additional
learning curve. For example, compared to software
implementations, speedups of 67×, 126×, and an astounding
8500×, were achieved in stereo matching [15] embedded
benchmark kernels [16], and error correction codes [17],
respectively. Applications gaining modest speedups of three to
nine times the software performance [18-20] were also
considered satisfactory, particularly when the reference software
implementations are the highest-performing implementations
available. For hardware engineers, however, the trade-off is
reversed; RTL designs can be extremely efficient, and their main
drawback is prolonged development time. Although hardware
engineers are undoubtedly interested in improving their
productivity, they may not be willing to give up the high
performance they are accustomed to, and therefore recommend
confining the use of HLS to design-space explorations [21], and
not production-grade FPGA designs.

 Nevertheless, numerous efforts have been made to evaluate
the performance of HLS implementations compared to RTL
designs in various domains, and results depended heavily on the
application. For example, a Memcached server application [22]
benefited from the accelerated development cycle of HLS,
reaping tangible gains in both performance and resource usage
at 35% and 30%, respectively. On the other hand, applications
in nuclear science [23] suffered drastically as their resource
usage doubled and their performance halved. More common in
HLS implementations, however, is a detachment of resource

savings from performance gains. Under HLS, applications such
as image processing [24] and arithmetic units achieved roughly
the same performance as the corresponding RTL
implementations, at the expense of increased resource usage of
up to 100%. Also, an HLS implementation of a RADAR signal
processing algorithm [25] achieved a speedup of two, at the cost
of a fourfold increase in resource usage, compared to RTL.
Resource usage does not always suffer under HLS, however. In
the cryptography domain [26], for example, throughput dropped
by 47% in the HLS implementation compared to RTL, while
resource saving reached 22%. An HLS implementation of K-
means clustering [27] also suffered a degraded performance of
50% at the same resource usage level as the RTL. It must be
noted, however, that increased usage of one resource may come
in tandem with a decrease in another. For example, logic
consumption may be accompanied with increased use of BRAM
[28-29], and increased lookup-table usage may occur with a
decrease in flip-flop usage [30], making it difficult reach a final
verdict on the effect of HLS on the application’s resource
utilization.

Another factor that goes into the evaluation of the HLS
approach is the productivity improvements it offers over the
traditional RTL approach. Yet, measuring productivity in this
context can be quite challenging [30]. Often, comparing two
approaches involves a learning curve in one approach but not the
other, and the first approach pursed in the comparison incurs the
cost of additional activities such as initial design decisions and
optimization details. Having said that, several works have cited
HLS development time to be about one- to two-thirds that of
RTL [19,22,24-25], although it can be five times lower [31].

The third factor in evaluating the HLS approach is power
consumption, which is seldom discussed in such studies despite
its direct impact on the total cost of ownership of the final
product.

In summary, with productivity being difficult to measure,
and the performance and resource utilization depending on the
application, drawing conclusions on the general cost-benefit
analysis of the HLS approach can be quite challenging. In fact,
even for the same domain and application, HLS designs can vary
in terms of performance and resource usage depending on the
adopted architecture [32]. Moreover, the choice of HLS tool
directly affects the efficiency of the generated RTL description
[33-34], a topic that is outside the scope of this paper.

B. Stencil Computation
In this study, we focus our attention on stencil computation,

a class of applications that process multi-dimensional arrays,
updating the value of each array cell by using the values of its
nearest neighbors. These neighboring cells are determined by
the stencil, a fixed pattern that defines the neighborhood of any
given cell. For example, in a two-dimensional matrix, a five-
point stencil includes the center cell, in addition to the four
orthogonal neighbors of a cell, namely the top-, bottom-, left-,
and right-neighbor cells. A nine-point stencil, on the other hand,
also includes the four diagonal neighbors. Thus, the fundamental
idea of stencil computations can be extended to neighbors of
neighbors. Because several neighboring cells are required to
compute a single cell value, and the number of operations is not

196

very significant, stencil computations have low arithmetic
intensity and consequently high bandwidth requirements. On the
other hand, stencil computations are inherently parallel, given
that each cell can be updated concurrently, and that the access
of only immediate neighbors can lead to high data locality.

We choose to solve Laplace’s equation () using a
five-point stencil and a Jacobi iteration scheme, a common
algorithm that is similar to stencil-based operations used in
many scientific computing applications. Implemented in a two-
dimensional uniform grid, the algorithm marches through a
series of iterations, producing an output matrix from an input
one by averaging the neighbors of each inner cell, as shown in
figure 1. The boundary cells of the matrix remain unchanged and
can be updated using a simple copy. However, by initializing
input and output matrices to the same values, the copying step
can be eliminated, and boundary cells are simply skipped. Input
and output matrices are swapped at the end of each timestep, and
the loop goes on until the two matrices converge in an
appropriate error norm. Computation is performed using double
precision floating-point variables, and convergence is
determined by comparing the mean squared error to a user-set
tolerance.

III. DESIGN
To exploit the algorithm’s locality, we designed our solution

to employ multiple parallel processing elements (PEs), each of
which processes a submatrix of 16 rows and 256 columns. PEs
operate independently within a timestep, but not across
timesteps because the convergence check performed at the end
of each iteration is needed before proceeding to the next
timestep, and it cannot be performed until all PEs have finished
processing the current timestep. In addition, the border cells at
the edges of each submatrix will have to obtain one of their four
neighbors from an adjacent PE, and synchronization is necessary
to ensure the retrieval of the updated value. Such cells are
referred to as “halos” or “halo cells”, and their efficient and
timely exchange is a crucial factor in high-performing
implementations. For a simple and efficient exchange of halo
cells between PEs, PEs are stacked vertically to limit halos to
top and bottom PE rows. PEs are wrapped in a top-level Engine
module that controls the time-stepping through convergence
checks.

(a)

(b)

Fig. 2. Basic design uses two passes for a throughput of three cycles. (a)
First pass takes two cycles to pass the four neighbors from input BRAM
Controller to averaging module. (b) Second pass computes error every cycle

Each PE is composed of a BRAM controller module that
manages the input and output matrices, an averaging module
that computes the new value of each cell, and an error module
that computes the PE’s accumulated error. As shown in figure 2,
the basic operation of a PE involves traversing the input matrix
twice in each timestep. In the first pass, the four neighbors of the
target cell are retrieved from the input BRAM controller and
passed to the averaging module. Once the computed value is
ready, it is passed from the averaging module to the output
BRAM controller for storage. In the second pass, the original
value residing in the input matrix and the newly-computed value
stored in the output matrix are passed to the error module and
the final accumulated error is then forwarded to the Engine
module for the convergence check, based on the total error
computed by all PEs.

A. HDL Implementation
The pipelined HDL design achieves high performance by

pursuing several optimization directions. First, an ideal PE
throughput of one cell update per cycle is achieved by removing
memory bottlenecks. Next, runtime is reduced by eliminating
control overheads in the management of both timesteps and
halos. Finally, through efficient use of hardware resources, the
FPGA can accommodate more PEs for higher computational
power. Table 1 lists the six optimization techniques carried out
in the HDL implementation, along with their resulting impact on
performance. Moreover, a description of each optimization
technique is detailed below.

 BRAM Partitioning: In the first pass, the averaging module
needs to access four neighbors while BRAM blocks support
only two ports, leading to a module throughput of two cycles per
cell update. By observing the predefined access pattern,
however, we notice that the four accesses performed by the
averaging function require only two cells of the same parity. As
such, by partitioning the PE’s BRAM memory into two blocks

while (error > tolerance) {
 running_diff = 0
 Loop from i=1 to i=rows{
 Loop from j=1 to j=columns{
 if (in_matrix(j,i) is boundary cell){
 out_matrix(j,i)=in_matrix(j,i)
 }
 else{
 sum = in_matrix(j+1,i) + in_matrix(j,i+1)
 + in_matrix(j-1,i) + in_matrix(j,i-1)
 out_matrix(j,i) = sum/4
 }
 diff = (out_matrix(j,i) - in_matrix(j,i))^2
 diff_sum +=diff
 }
 }

 error = sqrt(diff_sum / size);
 swap (in_matrix, out_matrix);
}

Fig. 1. Pseudo-code listing of the implemented algorithm.

197

Fig. 3. The BRAM Controller in the optimized HDL implementation uses two BRAM blocks. In the current cycle, neighbors a,b,c, and d of the target cell x are
simultaneously passed to the averaging module. The right neighbor, b, is also buffered into a FIFO. Similarly, in the previous cycle, x was buffered when the
neighbors of a were retrieved. After 29 cycles, the averaging module produces y, the updated value of x. Both x and y are then passed to error module.

and using the cells’ parity bit to index into the BRAM blocks,
all four neighbors can be retrieved in one cycle, without conflict
and with minimal overhead. Thus, by effectively doubling the
memory ports, the throughput of the averaging module is
improved to one cell update per cycle.

 One-pass Processing: To achieve a PE throughput of one
cell update per cycle, the two passes must be fused such that a
PE traverses its matrix only once per timestep. Consequently,
the PE must be able to perform up to five memory reads in any
given cycle, because the pipelined nature of the RTL design
must allow for the averaging and error computation steps to
occur simultaneously as part of different pipeline stages. Further
BRAM partitioning does not offer an efficient solution for the
fifth access needed for the error computation, as it would
introduce complex access management to avoid conflicting
accesses. Alternatively, the data access pattern is exploited by
observing that the right neighbor of the current cell will be the
target cell in the next cycle, which is the same value to retrieve
for computing the error of the next cell once its output is
available. As shown in figure 3, by buffering the right neighbor
of every cell until the output of its next cell is computed, we
eliminate the need for a fifth memory access altogether. Because
the averaging module has a latency of 29 cycles, a small,
register-based FIFO of 32 entries is used to hold the right
neighbors until the corresponding output is available.

 Seamless Halo Exchange: By exploiting the lockstep nature
of PE execution, PEs can access halos as if they were local
neighbors instead of exchanging halos in a separate, prior step
in each iteration. This is possible because cells at the PE border
use only three out of four available BRAM ports, so the fourth
port can be used to service a halo to an adjacent PE, as illustrated
in figure 4.

 Back-to-back Iterations: The total runtime can be further
reduced by running timesteps back to back, assuming that the
matrices have not converged yet. Thus, instead of waiting for the
convergence test results after a timestep completes, the next

timestep starts immediately in parallel with the error
computation for the convergence check. If convergence is
achieved, the timestep is aborted and the input matrix, rather
than the output one, is returned.

 Optimizing FP Division: The number of hardware resources
can be reduced by substituting the expensive division by 4.0
operation with the cheaper multiplication by 0.25 operation.
However, a greater resource saving would take advantage of the
FPGA’s ability to manipulate data at the bit level and transform
floating-point operations into integer operations. By observing
that a floating-point division by 4.0 simply reduces the floating-
point number’s mantissa by 2, the floating-point division is
replaced with a decimal subtraction operation, thereby releasing
10 DSP slices per PE.

 Optimizing FP Accumulation: Taking advantage of the small
data size of each PE, we decreased resource utilization by 87%
through configuring the floating-point accumulator to minimal
resource usage. This does not affect the accuracy of the results
because the accumulator is only used for the convergence test,
and in the worst-case scenario the accumulator would introduce
a rounding error of 2 53 for each of the submatrix’s 4,096 cells,
totaling to a negligible sum for a typical tolerance of 10 6.

TABLE I. OPTIMIZATION TECHNIQUES USED IN HDL

Optimization Benefit Compared to HDL Baseline

BRAM partitioning Speedup of 1.33×

One-pass Processing Speedup of 1.33×

Seamless halo exchange Speedup of 1.11×

Back-to-back iterations Speedup of 1.03×

Optimizing FP ivision Reduction of DSP utilization by 26%

Optimizing FP accumulation Reduction of logic utilization by 87%

198

Fig. 4. Border cells retrieve their halo values from adjacent PEs as if they
were local. PEs operate in lockstep, so the addresses of x, y, and z, are
identical. PE 2 receives its bottom halo, d, from PE 3, as it passes h to PE 1.

B. HLS Implementation
A naïve HLS implementation was also written in C. A top-

level Engine function includes a main loop that iterates through
timesteps and places several calls to the PE function in each
iteration, before checking for convergence using the running
difference sums returned by the PE function calls. Because PEs
are implemented as functions, submatrices are placed within the
Engine, not within each respective PE. Each PE receives
pointers to the input and output submatrices, in addition to
pointers to the submatrices of other PEs where halos reside.

Using this naïve implementation, two problems arise. First,
a simple pointer swap to alternate between the two submatrices
is not possible, because pointers-to-pointer are not allowed, and
pointers must be statically assigned. Second, having two
functions access the same array is not permissible, even if the
two functions do not alter the array’s data. This is the case when
a PE is reading its input submatrix and another PE is reading the
same submatrix to access its halos. To resolve this issue,
dedicated halo arrays are created to host duplicate copies of the
halo cells, and these arrays are passed to PE functions instead of
adjacent submatrices, as shown in figure 5. Similar to the
double-matrix approach, each PE has two halo arrays, one for
the input and another for the output, and a new function is
introduced for initial loading of halos. The performance cost of
this function, however, is negligible as it is only run once.
Although the halo-array approach incurs additional memory
usage, it is unavoidable for successful code generation. As for
matrix swapping, PE calls are duplicated and hardcoded with the
two possible combinations of pointer arguments, and a
conditional statement is used to choose the appropriate call
based on the iteration’s parity, also shown in figure 5.

By solving these issues, the baseline HLS implementation
successfully generated RTL code, albeit showing very poor
performance. This degraded performance was mainly caused by

the absence of floating-point accumulators in HLS, and the use
of floating-point binary adders instead. The problem with using
adders for accumulation is the self-dependency of the adder’s
inputs on its outputs: the output of the current addition is an input
for the next one and, therefore, each addition operation must be
completed before starting the next. This means that pipelining is
not possible and given the adder’s eleven-cycle latency,
processing a submatrix will take at least eleven times its size (in
clock cycles) to complete one timestep. To improve
performance, Xilinx recommends accumulating the values by
cyclically distributing them over several adders, allowing a
minimum of eleven cycles to elapse before any adder receives
its next accumulation input [35]. As shown in figure 6, each
adder maintains a partial sum, and these are also added up using
a tree adder once the submatrix processing is complete.

As listed in table 2, optimization techniques used in the HDL
version were adopted in the HLS implementation, where
applicable. BRAM blocks were partitioned to increase memory
ports by using pragmas, and reuse of the right neighbor through
buffering was also implemented but without the explicit use of
a FIFO. Instead, as the PE iterates through its cells, the right
neighbor is cached in a variable and used in the next iteration by
the next cell. To facilitate pipelining, HLS internally instantiates
a FIFO to hold this value until the output of the next cell is
available.

Resource reduction techniques used in the HDL version
were not applicable to the HLS implementation and could not be
replicated. In particular, converting floating point division to
integer addition was not performed because bit manipulation is
not easily accessible using high-level languages, and defeats the
purpose of a using high-level language. As for accumulator

double add_all(double x[32]) {
 double acc_part[4] = {0.0, 0.0, 0.0, 0.0};
 for (int i = 0; i < 32; i += 4){// Manually unroll by 4
 for (int j = 0; j < 4; j++){// Partial accumulations
 acc_part[j] += x[i + j];
 }
 }
 for (int i = 1; i < 4; i++) {// Final accumulation
 acc_part[0] += acc_part[i];
 }
 return acc_part[0];
}

Fig. 6. Example code describing the implementation of accumulators using four
partial adders for higher throughput in Vivado HLS. Adapted from [38].

load_halo(matrix_in, halos_in);

iteration_count = 0;
acc_error = 0;

while (error > tolerance) {
 if (iter_count %2 == 0){
 err = PE(matrix_in, matrix_out, halos_in, halos_out);
 acc_error += err;
 } else {
 err = PE(matrix_out, matrix_in, halos_out, halos_in);
 acc_error += err;
 }

 iteration_count++;
}

Fig. 5. Pseudo-code for hardcoded PE function calls in HLS implementation.

199

optimizations, these were not applicable because adders were
used instead. In fact, excessive use of resources to implement
partial sums was necessary to overcome the adders’ latency
when used as accumulators.

Finally, runtime could not be further reduced through back-
to-back execution of timesteps because loop-pipelining requires
unrolling of all internal loops, which is not feasible. As for
optimizing halo management, the design was refined to utilize
custom PE implementations that process halos depending on the
PE’s position: First PE, which uses a bottom halo, Last PE,
which uses a top halo, or Middle PE, which uses both halos.
Consequently, the latency overhead of halo management was
minimized, but the double-buffering of halos and the associated
memory usage could not be improved.

TABLE II. APPLIED OPTIMIZATIONS

Optimization HDL HLS

BRAM partitioning
One-pass processing
Seamless halo exchange
Back-to-back iterations
Optimizing FP division
Optimizing FP accumulation

IV. EVALUATION
The performance of FPGA designs largely depends on the

resources available on the FPGA. Thus, we proceed with a
review of the experimental setup before evaluating the two
designs.

A. Experimental Setup
Both the HDL and HLS implementations were developed

using Xilinx technologies, which were selected because of their
support of double-precision floating-point operations. The board
used was Nexys 4, a low-cost FPGA evaluation board equipped
with Xilinx Artix-7 100T [36] with limited resources, as shown
in table 3. The HDL model was developed using Xilinx Vivado
2018 and Floating-Point Operator v7.1 LogiCORE IP for
double-precision floating-point operations, and Clocking
Wizard v5.4 LogiCORE IP for automated clock creation. The
HLS version used HLS Vivado 2018, and the packaged IP was
wrapped in a top-level module in Xilinx Vivado 2018 for
implementation on the actual FPGA. Power measurements for
both implementations were provided by the same tool.

TABLE III. FPGA RESOURCES

Resource Count

Lookup-tables (LUTs) 63,400

Flip-flops (FFs) 126,800

DSP Slices 240

BRAM Blocks (18 Kbits) 270

B. Results and Analysis
Inadequate support of floating-point accumulators proved to

be particularly problematic for the HLS implementation. The
use of adders and partial sums introduced higher latencies to
tally up the partial sums, and increased resources because of the
array that holds the partial sums, the adders for each partial sum,
and the tree adder used for the final summation. Excessive use
of BRAM is another concern, with partial sums using eight
blocks for storage and the HLS tool instantiating four blocks per
PE to facilitate efficient implementations.

To implement pre-fetching of right neighbors, the tool used
a BRAM-based FIFO internally to buffer the values. This raised
BRAM usage by either six or ten blocks per PE, depending on
the PE’s position, whether it had one or two halo edges,
respectively. Compared with the 32 registers used in the HDL
implementation regardless of PE position, this excessive use of
BRAMs suggests the tool’s poor efficiency with regard to
complex control logic. This conclusion is in alignment with the
findings of Sharafeddin et al., in their evaluation of HLS’s
effectiveness in accelerating MapReduce functions [37]. They
observed that while improvements in either data flow or control
flow designs are possible using HLS, combining both in the
same design can be challenging for the tool and is likely to result
in degraded performance, particularly when floating-point
operations are involved.

As shown in table 4, this inflated use of resources allowed
the design to accommodate merely four PEs in the HLS
implementation, as opposed to eight PEs in the HDL version.
Although this lower PE count led to smaller resource
consumption in total, the HLS implementation suffered from a
slower clock, suggesting a poor underlying RTL description. In
addition, the HLS version endured long iteration delays given its
inability to pipeline the main loop, leading to low PE utilization.
With a combination of faster clock, larger PE count, and higher
PE utilization, the HDL implementation performed over 47,000
iterations per second at 2.1 watts, compared with the HLS
version with only 33,000 iterations per second and merely 0.1
watts less power. As such, the HDL version achieved more than
double the cell updates per watt compared with HLS. Results in
both implementations were bit-wise identical to that of a
reference software solution developed in MATLAB.

TABLE IV. PERFORMANCE RESULTS

Version
Usage % Freq.

MHz PEs PE
Utilization

Million Cell
Updates / WattLUT FF DSP BRAM

HDL 89 70 96 95 200 8 98% ~ 740

HLS 73 48 89 68 166 4 82% ~ 270

C. Observations

Some studies [33-34] have found Xilinx’s Vivado HLS to
require more hardware knowledge than other HLS tools, which
suggests that it offers higher control over the generated RTL
design. Yet, the difficulty in describing a parallel system using
a sequential language is inescapable. Not only does it not come
naturally, but it also introduces design limitations that prevent
optimal performance.

200

In theory, pragmas facilitate parallel design descriptions and
allow for flexible implementations and improved performance.
But in reality, they are of limited benefit given their many use-
case restrictions. For example, the dataflow directive could be
used to facilitate a loop pipeline, reducing runtime by allowing
timesteps to run back-to-back. However, because halo arrays are
written to and from by more than one PE function call, the main
loop does not conform to the canonical form required by the tool
to infer pipelined behavior. Even if the functions were
transformed into the canonical form, pipelining would not be
allowed because the PE functions return their running difference
sum, which is not permissible when using the directive unless it
is a top-level function.

Without explicit means to define parallelism, the tool must
adopt a conservative approach to safely detect parallel
operations without jeopardizing correctness. Often, the tool
falsely detects data dependencies and assumes serial execution,
without responding to pragmas or offering other tips for
improving performance as it cannot recognize the parallelism to
begin with. This inability to specify parallelism explicitly, and
failure to detect it implicitly, may come at a high cost. For
instance, the tool’s inability to run PEs in parallel when reading
from the same submatrix led to the introduction of halo arrays,
a steep price in terms of memory usage.

Additionally, the reliance on the tool to infer desired
behavior may produce an unexpected outcome that is difficult to
rationalize. For instance, before the main loop, halos load in
parallel if there are no PE calls in the main loop, and PEs execute
in parallel if there are no halo loading calls. However, if both
calls are placed, halo loading is serialized, and yet, dedicated
resources are allocated for each call. The serialization of halo
loading is puzzling because all halos should and do complete
loading before running the PEs, and their execution is
independent of each other. If the tool rightfully serialized the
calls, then how was it able to run them in parallel when PE calls
were not present? And if it wrongfully did so, then why would
it duplicate resources for parallel execution, and then run the
calls sequentially? Although there might be a good explanation
that escapes the developer, it is not immediately obvious, and it
takes time and effort to experiment with various scenarios to
elicit behavioral patterns that could help rationalize such
behavior. This point bears emphasis, as hardware engineers
adopting HLS as a time-saving tool may end up spending a
significant amount of time, up to several days if not weeks,
trying to understand the tool’s refusal to behave as desired.
Developers may ultimately succeed in conjuring up a maneuver
that steers the tool into desired behavior, but this is not always a
trivial task, and it is likely to render the code harder to
understand and maintain.

Having said that, the tool seems to manage resources quite
efficiently when pragmas, not manual manipulation, are used to
achieve desired behavior. For example, inlining halo loading
functions used fewer resources than hand-crafted functions,
designed to reuse idle buffers to cut memory usage in half.

V. RECOMMENDED PRACTICES
Development time using Vivado HLS can be considerably

reduced with improved understanding of the tool’s limitations,

and recognition of common tasks and usage scenarios that are
affected by these limitations. To this end, following are some
design techniques that proved of repeated benefit.

 Dynamic Arguments: HLS prohibits dynamic assignment of
pointers because hardware designs often have several memory
spaces, and the tool must know which memory space the
function intends to access so it can place wire connections
accordingly. One way to pass function arguments dynamically
is to introduce a layer of indirection by statically defining all
possible function calls and hardcoding the arguments for each,
then dynamically selecting the correct call using a conditional
statement. An example is illustrated in the pseudo-code listing
in figure 5.

 Parallel Execution: To ensure correct execution, HLS
prevents functions accessing the same array from running in
parallel. With the absence of support for constant parameters,
this includes read-only functions as there is no way to classify
them as such. Arrays must be split or duplicated, or functions
must be merged to enable parallel execution.

 Memory Over-allocation: There are two ways to synthesize
large arrays into a chain of multiple BRAM blocks. First is width
expansion, which distributes word bits across multiple BRAM
blocks, activating several blocks simultaneously with each
memory access which uses up power. Second is depth
expansion, which stores full words in each block and employs a
multiplexer to activate one block per memory access at the
expense of extra logic and delay. To enable high-performing
designs, HLS seems to favor width expansion which can lead to
prohibitive BRAM usage, particularly when words are very
wide and blocks are not fully utilized. As such, splitting large
arrays into smaller ones that fully utilize BRAM blocks can
drastically reduce memory usage.

 Resource Reuse: The most efficient way to serialize
execution and reuse logic is by extracting common logic in an
inlined sub-function. Conversely, turning the inlining off
duplicates resources and enables parallel execution, although
this doesn’t always succeed. A sure-but-less-convenient way to
ensure parallel execution is to replicate the functions and rename
them differently. Granted, this approach makes the code harder
to maintain, but in some cases it may be inevitable.

 FP Accumulators: With the absence of floating-point
accumulation support, the most efficient way to implement
accumulation is using partial sums and tree adders, as described
in the pseudo-code listing in figure 6.

VI. CONCLUSIONS
In this paper, we evaluated the efficiency of Xilinx’s Vivado

HLS tool compared to the traditional HDL approach in the
context of stencil computations, a class of applications that are
difficult to parallelize given their low arithmetic intensity and
high memory bandwidth requirements. For each approach, we
described a parallel, highly-optimized FPGA design solving
Laplace’s equation, using a five-point stencil and a Jacobi
iteration scheme. Analyzing the results, we found the HLS
implementation lacking in terms of performance and resource
usage, with performance-per-power reaching merely 36.4% that
of the HDL implementation.

201

While the Vivado HLS tool demonstrated excellent reuse of
logic resources with minimal overhead, it underdelivered with
respect to complex control and memory allocation. Therefore, it
may be concluded that an ideal approach would combine the use
of HLS code for computationally intensive portions, with hand-
crafted HDL implementations for logic control and memory
management. However, when memory management and control
logic are the most complex and time-consuming portions of the
application’s implementation process, as is the case in this study,
a hybrid method might not add much value compared with a
pure HDL design. Furthermore, in such method, the HDL
modules would be treated as a black box within the HLS design,
hindering the tool’s efforts to reuse resource consumed by the
HDL modules.

Either way, HLS introduces its own set of challenges as it
shifts the developer’s attention and effort from design and
testing to pondering the tool’s unexpected behavior, speculating
why the tool is allocating so many resources or incurring so
much latency. As such, developers are advised to set their
expectations accordingly, and incorporate ample time for
optimizations in their project planning.

ACKNOWLEDGMENT
The first author gratefully acknowledges the generous

support of the King Abdulaziz City for Science and Technology
(KACST), Riyadh, Saudi Arabia, for the conduct of this work,
and thanks Dr. Abdulaziz Alhussien for his valuable feedback
on the first draft of this manuscript.

REFERENCES

[1] “Microsoft Azure Virtual Machines,” https://azure.microsoft.com/en-

us/services/virtual-machines/.
[2] “GPUs on Compute Engine,” https://cloud.google.com/compute/docs/

gpus.
[3] “Amazon EC2 F1 instances,” https://aws.amazon.com/ec2/instance-

types.
[4] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D.

Burger, “Dark silicon and the end of multicore scaling,” in 2011 38th
Annual International Symposium on Computer Architecture (ISCA),
2011, pp. 365–376.

[5] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009.

[6] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt, “An
overview of today’s high-level synthesis tools,” Des. Autom. Emb. Sys.,
vol. 16, pp. 31–51, Sep. 2012.

[7] A. Dubey, “Stencils in Scientific Computations,” in Proceedings of the
Second Workshop on Optimizing Stencil Computations, 2014, p. 57.

[8] S. A. Edwards, “The Challenges of Synthesizing Hardware from C-Like
Languages,” IEEE Des. Test Comput., vol. 23, no. 5, pp. 375–386, 2006.

[9] G. Martin and G. Smith, “High-Level Synthesis: Past, Present, and
Future,” IEEE Des. Test Comput., vol. 26, no. 4, pp. 18–25, 2009.

[10] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 30, no. 4, pp. 473–
491, 2011.

[11] R. Nane et al., “A Survey and Evaluation of FPGA High-Level Synthesis
Tools,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 35, no. 10,
pp. 1591–1604, 2016.

[12] Xilinx, “Vivado Design Suite User Guide, High-Level Synthesis.” 2018.

[13] Intel Corporation, “Intel High Level Synthesis Compiler Pro Edition User
Guide.” 2019.

[14] “Catapult,” http://www.mentor.com/hls-lp/catapult-high-level-synthesis.
[15] K. Rupnow, Y. Liang, Y. Li, D. Min, M. Do, and D. Chen, “High level

synthesis of stereo matching: Productivity, performance, and software
constraints,” in 2011 International Conference on Field-Programmable
Technology, 2011, pp. 1–8.

[16] Y. Liang, K. Rupnow, Y. Li, D. Min, M. Do, and D. Chen, “High-Level
Synthesis: Productivity, Performance, and Software Constraints,” J.
Electr. Comput. Eng., vol. 2012, Feb. 2012.

[17] B. E. Conn, “Exploring High Level Synthesis to Improve the Design of
Turbo Code Error Correction in a Software Defined Radio Context,”
Thesis. Rochester Institute of Technology, 2018.

[18] J. Choi, R. Lian, Z. Li, A. Canis, and J. Anderson, “Accelerating
Memcached on AWS Cloud FPGAs,” in Proceedings of the 9th
International Symposium on Highly-Efficient Accelerators and
Reconfigurable Technologies, 2018.

[19] Y. Afsharnejad, A.-A. Yassine, O. Ragheb, P. Chow, and V. Betz, HLS-
based FPGA Acceleration of Light Propagation Simulation in Turbid
Media. 2018.

[20] K. Georgopoulos et al., “An evaluation of vivado HLS for efficient system
design,” in 2016 International Symposium ELMAR, 2016, pp. 195–199.

[21] D. Bailey, The advantages and limitations of high level synthesis for
FPGA based image processing. 2015.

[22] K. Karras, M. Blott, and K. Vissers, “High-Level Synthesis Case Study:
Implementation of a Memcached Server,” 1st Int. Work. FPGAs Softw.
Program. (FSP 2014), Sept. 1, 2014, Munich, Ger., Aug. 2014.

[23] T. Marc-André, Two FPGA Case Studies Comparing High Level
Synthesis and Manual HDL for HEP applications. 2018.

[24] M. D. Zwagerman, “High Level Synthesis , a Use Case Comparison with
Hardware Description Language,” Thesis. Grand Valley State University,
2015.

[25] S. Luthra, “High Level Synthesis and Evaluation of an Automotive
RADAR Signal Processing algorithm for FPGAs,” Electronic Theses and
Dissertations, 7274, 2017.

[26] E. Homsirikamol and K. Gaj, “Can high-level synthesis compete against
a hand-written code in the cryptographic domain? A case study,” in 2014
International Conference on ReConFigurable Computing and FPGAs
(ReConFig14), 2014, pp. 1–8.

[27] F. Winterstein, S. Bayliss, and G. A. Constantinides, “High-level
synthesis of dynamic data structures: A case study using Vivado HLS,” in
2013 International Conference on Field-Programmable Technology
(FPT), 2013, pp. 362–365.

[28] D. O’Loughlin, A. Coffey, F. Callaly, D. Lyons, and F. Morgan, “Xilinx
Vivado High Level Synthesis: Case studies,” in 25th IET Irish Signals &
Systems Conference 2014 and 2014 China-Ireland International
Conference on Information and Communications Technologies (ISSC
2014/CIICT 2014), 2014, pp. 352–356.

[29] D. J. Warne, N. A. Kelson, and R. F. Hayward, “Comparison of High
Level FPGA Hardware Design for Solving Tri-diagonal Linear Systems,”
Procedia Comput. Sci., vol. 29, pp. 95–101, 2014.

[30] Z. Zhao and J. Hoe, “Using Vivado-HLS for Structural Design: a NoC
Case Study,” Carnegie Mellon University, ECE Department, Pittsburgh,
PA USA, Tech. Rep. 27-Oct-2017.

[31] K. Rupnow, Y. Liang, Y. Li, and D. Chen, “A study of high-level
synthesis: Promises and challenges,” in 2011 9th IEEE International
Conference on ASIC, 2011, pp. 1102–1105.

[32] T. Cenova, “Exploring HLS Coding Techniques to Achieve Desired
Turbo Decoder Architectures,” Thesis. Rochester Institute of Technology,
2019.

[33] M. B. Shaodong Qin, “A Comparison of High-Level Design Tools for
SoC-FPGA on Disparity Map Calculation Example,” in Presented at
Second International Workshop on FPGAs for Software Programmers
(FSP 2015), 2015.

[34] G. Inggs, S. Fleming, D. Thomas, and W. Luk, “Is high level synthesis
ready for business? A computational finance case study,” in 2014
International Conference on Field-Programmable Technology (FPT),
2014, pp. 12–19.

202

[35] Xilinx, “Vivado HLS - How to achieve PIPELINE II=1 of floating point
accumulation?,” Support Article # 62859, 2914. [Online]. Available:
https://www.xilinx.com/support/answers/62859.html.

[36] Xilinx, “7 Series FPGAs Data Sheet: Overview.” 2018.
[37] M. Sharafeddin, M. Saghir, H. Akkary, H. Artail, and H. Hajj, “On the

effectiveness of accelerating MapReduce functions using the Xilinx

Vivado HLS tool,” Int. J. High Perform. Syst. Archit., vol. 6, p. 1, Jan.
2016.

[38] J. Hrica, “Floating-Point Design with Vivado HLS.” Xilinx, 2012.

203

