
Algorithm-Hardware Co-design for
BQSR Acceleration in Genome Analysis ToolKit

Michael Lo∗, Zhenman Fang†, Jie Wang∗, Peipei Zhou∗, Mau-Chung Frank Chang∗ and Jason Cong∗
∗University of California, Los Angeles, USA

milo168@ucla.edu, {jiewang, memoryzpp}@cs.ucla.edu, mfchang@ee.ucla.edu, cong@cs.ucla.edu
†Simon Fraser University, Burnaby, BC, Canada; zhenman@sfu.ca

Abstract—Genome sequencing is one of the key applications in
healthcare and has a great potential to realize precision medicine
and personalized healthcare. However, its computing process is
very time consuming. Even pre-processing the raw sequence data
of a whole genome for a single person to the analysis ready data
can take several days on a single-core CPU.

In this paper, we propose to accelerate the performance of the
widely used Genome Analysis ToolKit (GATK) using FPGAs.
More specifically, we focus on the algorithm and hardware co-
design for the Base Quality Score Re-calibration (BQSR) step
in GATK, which is an important and time-consuming step to
correct systematic errors made by a sequencing machine. Prior
studies did not consider hardware acceleration for BQSR because
it requires a large amount of memory with random access and has
a lot of control flow. To address these challenges, we first adapt
the algorithm to resolve the random memory access conflicts to
achieve a fully pipelined accelerator design and reduce its dataset
size. Second, we leverage the newly introduced large-capacity
UltraRAM (URAM) in Xilinx UltraScale+ FPGAs to buffer
BQSR’s large dataset on chip, and further optimize its operating
frequency. Finally, we also explore the coarse-grained pipeline
and parallelism to improve the overall performance of the BQSR
accelerator. Compared to the latest software implementation of
BQSR on GATK 4.1, running on single-thread and 56-thread
CPUs (14nm Xeon E5-2680 v4), our FPGA accelerator running
on Xilinx 16nm UltraScale+ VCU1525 board achieves up to 40.7x
and 8.5x speedups, respectively.

I. INTRODUCTION

Genome sequencing is one of the most important applica-

tions and has a great potential to reshape future healthcare

systems. By sequencing a patient’s genome and analyzing

this genome against a reference genome, clinical professionals

may precisely identify the patient’s health issue and accurately

prescribe corresponding medicine for treatment [1]. In the past

decade, the cost to sequence a whole human genome has

dramatically decreased, much faster than Moore’s law. Two

decades ago, it cost about $1,000,000 to sequence a human

genome; now the cost is at the level of $1,000 per genome [2],

affordable for health insurance providers and patients.

However, the high computing cost to analyze the genomes

has become one of the major obstacles in the clinical adoption

of genome sequencing. As shown in Figure 1, in genome se-

quencing, the first computing stage is the data pre-processing
that transforms the raw sequence data, called short reads,

to analysis-ready genome reads for the downstream variant
discovery stage. Those short reads coming from a single

run of the sequencer are considered as a read group. The

Fig. 1. Overview of the genome sequencing computation pipeline.

variant discovery stage is where the genome variants are

discovered, allowing for individually specific suggestions of

potential medicine and treatment [3]. In next-generation se-

quencing technology (NGS) [4], each short read is a small

piece of nucleobases (usually around 50 to 400 base pairs,

i.e., nucleobases), and a whole sequenced genome for a single

person usually includes 3 billion base pairs and hundreds of

millions of such short reads with high redundancy.

The data pre-processing stage further includes three major

steps [3]. The first step is map to reference (i.e., genome
alignment) that aligns short reads to a reference genome,

which is usually done using the widely used open-source

software package called BWA-MEM [5]. The second step

is mark duplicates that mark short reads that are likely to

come from the same genome fragments due to the artifactual

process in the sequencing machine. The third step is Base
Quality Score Recalibration (BQSR) that builds a statistical

model to adjust quality scores for each read base by correcting

systematic errors from the sequencing machine. The mark

duplicates and BQSR steps, together with the variant discovery

stage, are implemented in Broad Institute’s latest open-source

software package called Genome Analysis ToolKit version 4

(GATK4) [6]. GATK4 is implemented based on the in-memory

map-reduce computing framework Apache Spark [7] and is

widely used in the genome sequencing community.

According to Intel’s white paper on deploying GATK best

157

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00029

practices on Xeon CPUs [8], it took about 9.5 days to run

the data pre-processing and variant discovery stages for a

30x coverage whole human genome on a single-core CPU,

and 1.5 days on a 36-core CPU (6.3x speedup compared

to single-core CPU). This significantly limits the potential

clinical adoption of genome sequencing, especially for time

sensitive cases such as cancer treatment. To further improve

the computation performance of genome sequencing, prior

studies have developed hardware accelerators for the genome

alignment step [9]–[18], variant discovery step in GATK4 [15],

[19]–[22], and genome data compression [15], [23], [24] in

GATK4, by exploring abundant parallelism and customiz-

able computation pipeline in these steps. These studies have

shown great potential of hardware acceleration for genome

sequencing. For example, the FPGA acceleration of the Smith-

Waterman algorithm in the genome alignment step achieved

343.8x speedup over the single-core CPU implementation [9],

and the FPGA acceleration of the pair hidden Markov model

algorithm in the variant discovery step achieved 53x speedup

over the well-optimized single-core CPU implementation [20].

In this paper, we focus on the algorithm-hardware co-design

to accelerate the BQSR (Base Quality Score Recalibration)

step, which is an important and time-consuming step in

the latest GATK4 [6] software package. To the best of our

knowledge, there is no prior work on hardware acceleration

for the mark duplicates and BQSR steps yet, and we are the

first to accelerate the BQSR algorithm on FPGAs. We choose

to accelerate BQSR for two reasons: 1) BQSR is about 4x

more time consuming than the mark duplicate step [25]; and

2) compared to other steps, BQSR has some unique challenges

for hardware acceleration.

First, BQSR uses large covariate tables to characterize the

quality score of each read base, which have a total size of

around 8.7 MB. It is impractical to buffer such a large dataset

on conventional Block RAM (BRAM) of an FPGA. Second,

BQSR accesses these covariate tables in a random order, which

makes it very difficult to efficiently customize the computation

pipeline to achieve full pipeline with initiation interval (II) of

one. Third, BQSR has a lot of control flows in its algorithm.

As a result, this makes it more irregular and harder to

accelerate on GPUs. More details of the BQSR algorithm and

acceleration challenges are presented in Section II.

To tackle the above challenges, we propose algorithm and

hardware co-optimization for the BQSR accelerator design.

At the algorithm level, we first reduce the large size of

covariate tables by half through changing the data precision

of covariate table values from 64-bit to 32-bit; the average

accuracy loss is less than 0.008% and is negligible. Moreover,

we adapt the algorithm by buffering and merging potential

conflict accesses in a small cyclic queue before reading and

writing the covariate tables to resolve the conflicts of random

memory accesses during the accelerator pipeline design. At the

hardware design level, we leverage the newly introduced large-

capacity UltraRAM (URAM) in Xilinx UltraScale+ FPGAs,

which has about a 4x larger capacity than conventional BRAM,

to buffer BQSR’s large covariate tables on chip. To address

the low frequency issue caused by the long critical path that

the URAM blocks span, we pipeline off-chip data at multiple

checkpoints along the critical path and improve the operating

frequency of our accelerator design by 25%. Moreover, to

optimize the overall performance of the BQSR accelerator,

we fully pipeline the design of each computing engine and

explore the coarse-grained pipeline and parallelism between

computing engines. Finally, we reorganize the input data

layout to maximize the off-chip memory bandwidth utilization.

Our entire BQSR accelerator design is implemented in high-

level synthesis (HLS) C++ and built using Vivado HLS 2018.3.

It runs at 122MHz and utilizes 74% of the URAM resource,

which is the bottleneck resource. For the software baseline, we

run the latest GATK 4.1 package on a 28-core server with dual-

socket 14nm Xeon E5-2680 v4 CPUs. Our FPGA accelerator

running on Xilinx 16nm UltraScale+ VCU1525 board achieves

up to 40.7x and 8.5x speedups over the single-thread and 56-

thread versions, respectively.

II. BQSR ALGORITHM AND CHALLENGES

A. Base Quality Score Re-calibration (BQSR) Algorithm

Since today’s sequencing machines are error prone, they

also report a Phred quality score for each base in the sequenced

reads to characterize the confidence of the base accuracy. Such

quality scores affect the accuracy of downstream analysis, such

as the genome wide association study and precision medicine.

BQSR [26] aims to detect and correct patterns of systematic

biases of the short reads from the sequencing machine by

generating a model using these reported quality scores.

1) Covariates: To generate the quality score model, the

following four features (i.e., covariates) of each base in the

short reads are explored in BQSR. First, read group covariate
describes which group the read strand belongs to. Second,

quality score covariate characterizes the association of mis-

matches with each individual quality score. Third, sequence
context covariate characterizes the association of mismatches

with the sequencing context; for example, dinucleotide ‘AC’

often has much lower quality than ‘TG’. Fourth, cycle se-
quence covariate characterizes the association of mismatches

with machine cycles on which the sequencer is on.

2) Covariate Tables: Each covariate has its own table,

where each table entry includes a value pair {#occur, error}
with 128 bits: one is the number of occurrences the base has

appeared (#occur), which is a 64-bit integer in GATK4; and

the other is the accumulation of mismatch error values for the

base (error), which is a 64-bit double-precision floating point

in GATK4. The read group and quality score covariate tables

are 2 and 3 dimensional, respectively; while both the sequence

context and cycle sequence covariate tables are 4 dimensional.

The first dimension has 3 types of error events: 1) mismatch, if

the given base and reference base do not match; 2) insertion,

if an extra base was read when it should not be read, and

3) deletion, if a base was not read when it should have been.

The second dimension is the number of read groups. The third

dimension is the number of possible quality scores that range

158

from 0 to 93. The last dimension is a covariate’s specific size:

it is 1012 for context covariate and 1002 for cycle covariate.

3) Algorithm 1: This algorithm describes the core al-

gorithm of the BQSR step in GATK4 [6]. This takes

up to 98% of the execution time of BQSR and is

a good candidate for hardware acceleration. BQSR uses

a histogram-like algorithm and has two major func-

tions for each read: COMPUTE_COVARIATE_INDICES and

UPDATE_COVARIATE_TABLES.

Function COMPUTE_COVARIATE_INDICES uses each

read’s bases, quality scores, and read group (RG) to generate

four groups of indices (idxRG, idxQual, idxCtx, and idxCyc)

that will be employed to update the four covariate histograms,

i.e., read group, quality score, sequence context, and cycle

sequence covariate tables. Each group of indices is a 2

dimension array: the first dimension is the type of error event,

and the second dimension is the base index inside the read.

1. Lines 2-4 in Algorithm 1 are used to compute the read

group covariate index idxRG. We only need to get the read

group number (RG) from the input genome to index the

second dimension of the table.

2. Lines 5-7 are used to compute the quality score covariate

index idxQual. We only need to get the mismatch/inser-

tion/deletion quality scores (BaseQ, InQ, DelQ) from the

input genome to index the third dimension of the table.

3. Lines 8-22 are used to compute the sequence context

covariate index idxCtx. We only need to compute the

mismatch and insertion/deletion context values ctxM and

ctxIndel to index the fourth dimension of the table. As

shown in lines 9-12 and lines 18-22, we only compute

the indices for a valid range of bases inside a read. We

also complement the base value for a negative read strand

(lines 13-15), e.g., changing ‘A’ to ‘T’ and ‘G’ to ‘C’,

etc. The CtxM and CtxIndel values are calculated through

the Context function (lines 16-17), which mainly involves

bit shift and mask operations for the bases and a constant

valued key mask (mismatchMask or indelMask).

4. Lines 23-35 are used to compute the cycle sequence covari-

ate index idxCyc. We only need to compute the mismatch

and insertion/deletion key values subKey, indelKey to index

the fourth dimension of the table. As shown in lines 24-26,

it calculates the machine cycle and inc step from the read
order factor (ROF). It then reverses them if it is a negative

strand (lines 27-29). By using the keyFromCycle func-

tion to generate a value through negation, addition, and shift

operations based on the cycle input, the code calculates the

subKey for each base in line 31. The indelKey is the same

as subKey for the valid range of bases (lines 32-33).

Function UPDATE_COVARIATE_TABLES updates the val-

ues of the four covariate tables. For each covariate table,

based on the valid base index and event type (lines 37-39

in Algorithm 1), it reads the corresponding multi-dimensional

indices idx[] to the table from the results generated by function

COMPUTE_COVARIATE_INDICES. For a valid idx[], the

function will update the value pair {#occur, error} of the

Algorithm 1 Pseudo code for software BQSR for 1 read

1: function COMPUTE COVARIATE INDICES

2: #1. Generate Indices for Read Group (RG) Covariates:
3: for each base do //base index: b; 3 types of errors
4: idxRG[3][b] ← {RG,RG,RG}
5: #2. Generate Indices for Quality Covariates:
6: for each base do
7: idxQual[3][b] ← {BaseQ,InQ,DelQ}
8: #3. Generate Indices for Context Covariates:
9: {leftClipIdx, rightClipIdx} ← GetClipIdx(bases)

10: for each base do
11: if b < leftClipIdx || > rightClipIdx then
12: invalidate base[b]

13: for each base do
14: if read is negative strand then //len: # of bases
15: base[b] ← complement(base[len-b-1])

16: CtxM ← Context(mismatchMask,MaskSize,bases)
17: CtxIndel ← Context(indelMask,MaskSize,bases)
18: for each base do
19: if !(leftClipIdx > rightClipIdx) then
20: idxCtx[3][b] ← {ctxM,CtxIndel,CtxIndel}
21: else
22: idxCtx[3][b] ← {-1,-1,-1}
23: #4. Generate Indices for Cycle Covariates:
24: ROF ← (isReadPairs && isSecondOfPair) ? -1 : 1
25: cycle ← ROF //ROF: Read Order Factor
26: inc ← ROF
27: if read is negative strand then
28: cycle ← len * ROF
29: inc ← -1 * ROF
30: for each base do
31: subKey ← keyFromCycle(cycle)
32: //T1 and T2 are two constant thresholds
33: indelKey ← (b < T1 || b > T2) ? -1 : subKey
34: idxCyc[3][b] ← {subKey,indelKey,indelKey}
35: cycle += inc

36: function UPDATE COVARIATE TABLES

37: for each event type do
38: for each valid base do
39: for each covariate do
40: if idx[] is valid then
41: updateTable(idx[],{#occur,error})

corresponding table entry by accumulating (reading-adding-

writing) the number of occurrences (#occur) and mismatch

(error) value of that base (lines 40-41 in Algorithm 1).

For more details about the BQSR algorithm, please refer to

Broad Institute’s documents on GATK4 [6] and BQSR [26].

B. BQSR Acceleration Challenges

1) Challenge 1: Large Dataset: Table I summarizes the

storage requirements of the four major covariate tables (in

function UPDATE_COVARIATE_TABLES) and their corre-

sponding table indices used in BQSR if it is implemented on

hardware. Their element size, number of elements, and total

size is included. This is assuming that we accelerate one read

group at a time (accelerating K read groups at a time will

increase the covariate table sizes by K times) and there is at

most 1,000 bases per read (long enough for next-generation

sequencing). To efficiently accelerate BQSR, a minimum on-

chip storage of 8.7MB is required, but this amount is very

difficult to fit onto conventional BRAMs of an FPGA. For

159

TABLE I. MAJOR STORAGE REQUIREMENTS FOR HARDWARE

ACCELERATION

Name Element Size Num of Elements Total Size
4*2-D Table Indices 32-bits 4x3x1000 46.88KB
2-D Read Group Table 128-bits 3x1 48B
3-D Quality Table 128 bits 3x1x94 4.41KB
4-D Context Table 128 bits 3x1x94x1012 4.35MB
4-D Cycle Table 128 bits 3x1x94x1002 4.31MB

example, the Xilinx UltraScale+ VCU1525 board we use in

this paper—which has the same FPGA chip as the one used

in Amazon F1 instance [27]—has a total of 8.9MB BRAMs.

Typically, one cannot use more than 80% of the BRAM

resource in order to build the FPGA design. Moreover, it is

also very difficult to apply data tiling for the BQSR algorithm

due to the random memory access behavior explained below.

2) Challenge 2: Random Memory Access Conflict: When

updating (it is actually read-update-write, for simplicity, we

use update throughout the paper) the covariate tables, the

indices that come in have no particular order or pattern.

This random memory access behavior presents a considerable

challenge to accelerating the performance of the covariate table

updating stage. First, it leads to the synchronization issue when

two table updates index the same position: the second update

has to happen after the first one, as illustrated in Figure 2a).

Second, due to the large table sizes and limited on-chip cache

or buffer sizes, it is hard to avoid the synchronization by

simply replicating the covariate tables for parallel access.

Moreover, unless we can ensure two random updates use

different indices, as illustrated in Figure 2b), when we try

to pipeline the table update on an FPGA—assuming we can

buffer tables on chip—this random memory access conflict

issue prevents the high-throughput design with a pipeline

initiation interval (II) of one.

Fig. 2. An example of random memory access conflict: a) both updates use
index a to the table, the second update has to happen after the first one; b)
two updates using different indices can be fully pipelined with II=1.

3) Challenge 3: Control Flow Divergence: When comput-

ing the sequence context and cycle sequence covariate indices,

many computations depend on input properties of the short

read, leading to control flow divergence. This divergence also

exists when updating the covariate tables. Therefore, it is

difficult for GPU acceleration. But it is natural for an FPGA

accelerator to fully pipeline the design with control flow.

III. BQSR ACCELERATOR DESIGN

A. Hardware-Friendly Algorithm Optimization

In order to efficiently accelerate BQSR on FPGA, we pro-

pose several algorithm-level optimizations. The pseudo code of

the hardware-friendly algorithm is presented in Algorithm 2,

with the changes from Algorithm 1 highlighted in red italic.

Algorithm 2 Pseudo code for hardware BQSR for 1 read

1: function LOAD INPUT

2: for each base do //pipeline II=1; base index: b
3: rawInput[b] ← off-chip DRAM

4: function COMPUTE COVARIATE INDICES

5: for each base do //pipeline II=1
6: parseInput(rawInput[b])

7: {leftClipIdx, rightClipIdx} ← GetClipIdx(bases)
8: //Merge two loops (lines 10-15) in Algorithm 1
9: for each base do //pipeline II=1

10: if read is negative strand then //len: # of bases
11: if len-b < leftClipIdx || > rightClipIdx then
12: invalidate base[b]
13: else
14: base[b] ← complement(base[len-b-1])

15: else
16: if b < leftClipIdx || > rightClipIdx then
17: invalidate base[b]

18: CtxM ← Context(mismatchMask,MaskSize,bases)
19: CtxIndel ← Context(indelMask,MaskSize,bases)
20: ROF ← (isReadPairs && isSecondOfPair) ? -1 : 1
21: cycle ← ROF //ROF: Read Order Factor
22: inc ← ROF
23: if read is negative strand then
24: cycle ← len * ROF
25: inc ← -1 * ROF
26: //Merge the four indices computing in Algorithm 1
27: for each base do //pipeline II=1;
28: subKey ← keyFromCycle(cycle)
29: //T1 and T2 are two constant thresholds
30: indelKey ← (b < T1 || b > T2) ? -1 : subKey
31: for each covariate do //unrolled
32: for each event do //unrolled
33: if valid base then
34: idx[] ← {RG,BaseQ,InQ,DelQ,CtxM,
35: CtxIndel,subKey,indelKey}
36: cycle += inc

37: function UPDATE COVARIATE TABLES

38: //Swap the loops in Algorithm 1
39: for each covariate do //unrolled for parallelism
40: for each event do //unrolled for parallelism
41: for each valid base do //pipeline II=1;
42: //Buffer and partially merge table updates
43: //in queue[Q] to avoid memory conflicts
44: found ← Find&Merge(queue[Q],idx[])
45: if queue[b%Q] is valid then
46: updateTable(queue[b%Q])
47: invalidate queue[b%Q]

48: if !found then
49: queue[b%Q] ← {idx[],#occur,error}

1. Function LOAD_INPUT is added in Algorithm 2 lines 1-3,

which is used to load raw input genome data from off-chip

DRAM to on-chip URAM.

2. We merge multiple loops into one whenever possible so that

they can be accelerated in a single pipeline and executed

concurrently on hardware. For example, we merge two

loops in Algorithm 1 (lines 10-15) into one in Algorithm 2

(lines 8-17). Then we combine the four covariate indices

computing loops into one in Algorithm 2 (lines 27-37).

3. To reduce the covariate table sizes, we change the type of

the table value #occur (number of occurrences) from 64-bit

160

1 Datum queue[Q]; //queue to buffer and merge table updates
Datum struct holds table entry {idx[], #occur, error}

2
3 //Iterate each valid base: from lines 42-50 in Algorithm 2
4 for(int b = 0; b < READ_LENGTH+Q; b++){
5 #pragma HLS pipeline II=1
6 #pragma HLS dependence variable=table inter true

distance=Q
7
8 //Get info of current table entry to update
9 Datum current = getTableEntryInfo(covariate, event, b);

10
11 //Find if current entry is in queue, if yes, merge the

partial results to the found entry in queue
12 bool found = false;
13 MERGE: for(int q = 0; q < Q; q++){ //Unrolled by HLS
14 if(current.index == queue[q].index){
15 queue[q].numOccurance += 1;
16 //type of partial mismatchError in queue is int
17 queue[q].mismatchError += current.mismatchError;
18 found = true;
19 }
20 }
21
22 //Update actual covariate tables using the queue entry

indexed by b%Q (if valid), then free this entry.
This queue delays the conflict access (index b+Q
vs b) to covariate table by Q iterations

23 if(queue[b%Q].index >=0) {
24 updateTable(covariateTables,queue[b%Q]);
25 queue[b%Q].index = -1;
26 }
27
28 //If current entry is not in queue, insert it into

queue at the position indexed by b%Q
29 if(found == false){
30 queue[b%Q].index = current.index;
31 queue[b%Q].numOccurance = 1;
32 queue[b%Q].mismatchError = current.mismatchError;
33 }
34 }

Listing 1. Major code to fully pipeline the covariate table updating (lines
42-50 in Algorithm 2) by buffering and partially merging potential conflict
accesses in a small cyclic queue.

integer to 32-bit integer as there is at most 3 billion bases in

a human genome. We also alter the type of the table value

error (accumulated mismatch error) from a 64-bit double to

a 32-bit single floating point, with an average accuracy loss

less than 0.008%. As a result, the table sizes are reduced

by half to about 4.3MB.

4. The nested loops in the covariate table update have been

swapped, as shown in Algorithm 2 (lines 39-42), enabling it

to efficiently pipeline the base loop (line 42) and parallelize

the outer loops (lines 40-41).

5. Last and most importantly, to resolve the random memory

access conflict issue, we add a small cyclic queue of size

Q to buffer and partially merge potential conflicts before

updating the covariate tables, as shown in Algorithm 2 lines

43-50. A more thorough code is shown in Listing 1. As

shown in lines 11-20 (MERGE loop), for the current table

entry associated with base b, the algorithm first checks if the

table index is already in the merge queue. If yes, it partially

accumulates the results to the found entry in the queue.

Otherwise, it inserts this table entry into the merge queue

using the cyclic index b%Q (lines 28-33). The essential

part is in lines 22-26: Instead of updating the covariate

table directly using the current table entry which might lead

to access conflict with a prior update (due to the random

Fig. 3. Overview architecture of the BQSR accelerator.

access behavior), now we use the queue entry indexed by

b%Q to update the covariate table. Since every entry in the

queue is different, it is guaranteed that there will be no

conflict access within Q iterations of the base loop (line 4).

B. BQSR Accelerator Design and Optimization

Based on the optimized algorithm, we design and implement

a parallel and fully pipelined BQSR accelerator on FPGA

in Vivado HLS C++. We leverage the large-capacity URAM

resource to buffer the large covariate tables on-chip and further

optimize its operating frequency. Moreover, we optimize the

merge queue design in hardware to resolve URAM access

conflict and thus achieve full pipeline with initiation interval

(II) of one. Figure 3 gives an overview architecture of our

BQSR accelerator.

1. Initialize Tables. This beginning stage initializes covariate

tables on URAM to 0, as URAMs (unlike BRAMs) do not

automatically initialize themselves. It only executes once.

2. Load-Compute-Update Processing Element (PE). This is

the main component to implement Algorithm 2, and each

PE is designed to execute one read group, which essentially

removes the read group dimension needed for the covariate

tables and thus minimizes the on-chip storage requirement.

While the number of read groups can dynamically range

from 1 to any number in the software version, now they

can always be distributed to our PEs without the hardware

accelerators underutilized. Since we reduce the covariate

table sizes and have large-capacity URAMs, we create K

copies of covariate tables and K parallel PEs. Each PE im-

plements three computing engines—Load Input, Compute
Indices, and Update Tables—corresponding to the three

functions in Algorithm 2. We further explore coarse-grained

pipeline between these three stages by using a ping-pong

buffer and balance them by parallelizing Compute Indices
with M duplications and Update Tables with N duplications.

We present more details of these stages and corresponding

hardware optimizations below.

3. Accumulate Tables. This stage merges the K copies covari-

ate tables into a single copy and writes it back to off-chip

memory. It only executes once at the end of the program.

1) Load Input and Data Layout Re-organization: This stage

loads the raw input genome data from off-chip memory to on-

chip URAM and is fully pipelined with II=1. To maximize the

161

Fig. 4. Input read data layout re-organization to pack all data fields of one
base into a single consecutive chunk.

off-chip memory bandwidth, we pack off-chip data transfer

in 512-bit chunks. There are 11 data fields for each base.

Originally, for each field, data fields from multiple bases

are packed together into a single 512-bit chunk, shown in

Figure 4a). As a result, it needs multiple memory accesses

to grab all data fields of one base. To address this limitation,

we change the input data layout so that one 512-bit chunk

packs all the fields for a single base, as shown in Figure 4b).

2) Compute Indices: This stage computes all covariate table

indices. Shown in Algorithm 2, we have pipelined all loops in

function COMPUTE_COVARIATE_INDICES with II=1, and

we parallelize this engine for reads inside a read group.

3) Update Tables: As shown in Algorithm 2, we parallelize

the two outer loops (covariate and event loops in lines 40-

41) and fully pipeline the innermost base loop (line 42) with

II=1. Eliminating the random memory access conflicts when

updating the table is the biggest challenge to achieving II=1.

Based on the revised algorithm using a small cyclic merge

queue as presented in Listing 1, our hardware implementation

needs to provide 1) a shorter latency of the merge step in

the queue than that of a covariate table update, and 2) a large

enough queue size Q, so that before one covariate table update

using queue[b%Q] is completed, it will not cycle back to the

update using the queue element queue[(b+Q)%Q], which is

the same as queue[b%Q].

1. Shorter queue merge latency. In the MERGE loop shown in

lines 13-20 of Listing 1, it only accumulates a very small

number of potential conflict entries (<= the queue size Q)

in the queue. Therefore, it does not need all bits in a single

floating point to store the partially accumulated mismatch

error value. This gives us an opportunity to downgrade the

float type of the mismatch error value to an int type in

the MERGE loop, which has much faster latency for the

arithmetic operations (1 cycle in our design) compared to

the float operations [28]. To avoid the value overflow and

minimize the accuracy loss, we convert the 32-bit float to a

32-bit integer by multiplying 227 in the MERGE loop, then

we convert it back to the regular 32-bit float when updating

the covariate table in URAM (line 24 in Listing 1). The

average accuracy loss is less than 0.008%.

2. Queue size Q selection. To make sure the second covariate

table update will not cycle back to use the queue element

Fig. 5. BQSR accelerator layout on Xilinx VCU1525 FPGA board: Yellow
diamonds represent URAMs used in the design, the thin limegreen lines
indicate BRAMs used, and the red line indicates the critical path.

queue[(b+Q)%Q] before the first covariate table update

using queue[b%Q] is completed, we need a queue size:

Q >= CovariateUpdateLatency/QueueMergeLatency
In our design, it takes 1 cycle for the MERGE loop so

QueueMergeLatency = 1. The latency of updating the

covariate table CovariateUpdateLatency (dominated by

the mismatch error value update) includes two parts: 1) the

integer to floating point conversion that requires 2 cycles,

and 2) the floating point accumulation in HLS that requires

16 cycles. Therefore CovariateUpdateLatency = 18 and

Q >= 18. On the other hand, the larger Q is, the longer

the critical path of the pipeline is (we fully pipeline the

base loop in line 4 of Listing 1). Therefore, we choose the

smallest queue size Q = 18 in our design.

4) URAM Optimization for Higher Frequency: With data

reading and writing, timing issues usually arise in the critical

paths between the DRAM interface and the on-chip storage,

especially URAMs blocks. As shown in Figure 5, URAM

blocks span the whole FPGA chip (in fact, 3 dies in the Xilinx

UltraScale+ VCU1525 FPGA board in Figure 5). However, for

each iteration of the pipeline, updates on URAM covariate

tables need to be completed in 1 cycle to achieve II=1.

As a result, it lowers the overall accelerator frequency. To

address the frequency issue, we pipeline the data to multiple

checkpoints along the critical path using the open-source tool

Latte [29]. By increasing some latency to the data loading,

we improve the accelerator frequency by 25%. As presented

in Section IV-D, the increased latency in the Load Input stage

can be hidden in our coarse-grained pipeline design.

IV. RESULTS AND ANALYSIS

A. Experimental Setup

We run the latest version of the widely used GATK4.1 [6]

for the software baseline. This is developed on top of the in-

memory map-reduce computing framework Apache Spark. For

the CPU, we use a dual socket 14nm Xeon E5-2680 v4 CPU

server that has 28 cores and 72GB DRAM; each CPU core

also has 2 hyper-threads. For the software version, we increase

the number of threads from 1 to 2 to 4, and up to 56.

Our FPGA accelerator is designed using Xilinx Vivado HLS

2018.3. It supports up to 1000 bases per read, which is gen-

erally enough for short reads in next-generation sequencing;

it can be increased if necessary since the processing of each

base is fully pipelined and it does not add too much on-chip

storage. The FPGA platform we run on is Xilinx’s 16nm

162

TABLE II. GENOME DESCRIPTION AND ITS SINGLE-CORE RUN-TIME

Name Source # of Reads File Size Time (s)
SRR2114965 [30] 42,888,871 57 GB 481.66

HCC1954 [31] 18,373,093 30 GB 245.15
NA12878 [32] 57,962,777 134 GB 985.18

Virtex UltraScale+ VCU1525 FPGA board, which has the

same FPGA chip as that in Amazon F1 instance [27]. On this

board, we can put 4 processing elements (PEs) and, inside

each PE, there is 1 Load Input engine, 4 Compute Indices
engines, and 10 Update Tables engines, as shown in Figure 3.

The accelerator runs at a frequency of 122MHz.

For input genomes, we select three random human genomes

from the 1,000 genome project database [33]. We also ran-

domly chop them into smaller segments with a different

number of short reads (18 million to 58 million short reads),

so that the single-thread software version of the BQSR step

can finish within 20 minutes. Table II summarizes the genome

(segment) name, its source, the number of short reads it

includes, its file size, and the execution time (in seconds) on

a single-core CPU.

B. Resource Utilization and Performance Upper Bound

We summarize the resource utilization of our current BQSR

accelerator design on the Xilinx VCU1525 FPGA board in

Table III. Note that Vivado HLS usually only allows designers

to use up to 70-80% of any FPGA resources; otherwise, the

build will fail. As shown in Table III, the performance of our

accelerator is limited by the number of URAM resource, where

it already occupies 74%. We cannot add any more processing

elements that require extra URAM blocks.

TABLE III. BQSR RESOURCE UTILIZATION ON FPGA

BRAM DSP FF LUT URAM
50% 4% 10% 50% 74%

Between the URAM and BRAM usage, we buffer the large

covariate tables (dominating resource) and raw input genome

data onto URAM. And we buffer the covariate table indices

and the parsed covariate table value pairs {#occur,error}
for the current K (K=4) read groups that the accelerator is

processing onto BRAM.

C. Overall Speedup

Figure 6 presents the speedups of multi-thread CPU versions

and our FPGA accelerator version over the single-thread CPU

version. To make a fair comparison, for the CPU version, we

only measure the time it takes to do the index computations

and table updates, which are the same ones we measure for

the FPGA version. The execution time for the FPGA version

includes CPU to FPGA data transfer but does not include the

input data layout reorganization. Due to the random memory

access conflicts and large dataset, the CPU performance does

not scale linearly with the number of threads. Depending on

the input genome, the 56-thread CPU version only achieves

4.8x to 7x speedup. While our FPGA accelerator achieves 35x

to 40.7x speedup over the single-thead CPU version, and 5.5x

to 8.5x speedup over the 56-thread CPU version.

Fig. 6. Overall speedup comparison of FPGA and multi-thread CPU versions

We applied the double to float conversion to the software

version of BQSR as well, but found that there was little impact

on the CPU performance since the random memory access

behavior dominates its performance. The same algorithm op-

timization using a small cyclic queue to eliminate memory

access conflicts does not work well in the CPU version since

it requires the corresponding hardware customization as well.

D. Accelerator Efficiency Analysis

We further analyze the accelerator efficiency to demonstrate

that our accelerator design has been well optimized. First, as

presented in Algorithm 2, all the major loops in our HLS-

based accelerator have been fully pipelined with II=1. Second,

we analyze the workload balance between the Load Input,
Compute Indices, and Update Tables stages inside each PE,

where coarse-grained pipeline optimization has been applied

using ping-pong buffer. The execution latencies of these three

stages are summarized in Table IV under different read lengths

(number of bases). The dominating stages are the Compute
Indices and Update Tables stages (columns ‘Compute’ and

‘Update’). These are balanced between each other with 4

parallel copies of Compute Indices and 10 parallel copies of

Update Tables. The original Load Input stage (column ‘Load-

Original’) was short in execution latency, but lowered the clock

frequency. After the frequency optimization with Latte [29],

the latency of the new Load Input stage (column ‘Load-Latte’)

becomes 70%-85% of that of the Compute Indices and Update
Tables stages, which is still hidden by those two stages.

TABLE IV. LATENCY FOR Load Input, Compute Indices (4 copies), AND

Update Tables (10 copies) STAGES UNDER DIFFERENT READ LENGTHS

Read Length Load-Original Load-Latte Compute Update
50 121 207 251 270
100 209 328 451 470
150 302 534 651 670
250 482 902 1051 1070
500 937 1713 2051 2070

1000 1842 3338 4051 4070

E. Accuracy Analysis

Since we reduce the precision of the accumulated mismatch

error value in the covariate tables from the 64-bit double to

a 32-bit float and further convert the 32-bit float to a 32-bit

integer for the partial accumulation results in the small cyclic

merge queue, there is some accuracy loss for this data field.

163

TABLE V. HIGHEST AND AVERAGE ERROR RATE FOR THE ACCUMULATED

MISMATCH ERROR VALUE IN THE COVARIATE TABLES

Single-Precision Half-Precision
Genome Highest Average Highest Average

SRR2114965 0.0131% 0.0078% 97.16% 37.18%
HCC1954 0.2247% 0.0008% 92.56% 16.29%
NA12878 0.0231% 0.0017% 98.9% 42.32%

We profile the average and highest error rates for each input

genome, as shown in Table V. Depending on the input genome,

the highest error rate for a single table value is from 0.0131%

to 0.2247%, while the average error rate for all table values

is from 0.0008% to 0.0078%, which can be well tolerated.

To check whether we can save more on-chip storage re-

source, we also profile the average and highest error rates for

each input genome using 16-bit half-precision floating point

numbers. As shown in Table V, when using half-precision,

the average error rates are high and the highest error rates are

well over 90%. This is because there are not enough bits in

the exponent field of half-precision float and there are frequent

value overflows. Therefore, we choose to utilize the 32-bit

floating point in our design.

V. RELATED WORK

In addition to the genome sequencing acceleration work

mentioned in Section I, we further discuss two major cate-

gories of related work: 1) acceleration for parallel histogram

computation and 2) hardware acceleration leveraging URAM.

A. Acceleration for Parallel Histogram Computation

There are many prior studies that accelerate the histogram-

based applications on FPGA [34]–[38]. To solve the memory

conflict in the updates of histogram tables, these studies resort

to duplicating either the computation or memory resources.

Gautam [34] proposed an FPGA accelerator for calculating

the histogram using a map-reduce fashion. The frequency of

each input element is calculated in parallel and then reduced

by a shuffle network. However, the computation resource of

this architecture is proportional to the input and output size and

therefore it is not scalable for handling large-scale histogram

problems like the BQSR algorithm.

Maggiani et al. [35] exploited parallelism by duplicating the

histogram tables. The number of duplicated tables equals the

latency of the update operation. This will also cause scalability

issues as the storage requirements for the duplicated tables

could easily go beyond the on-chip limit when handling large

tables and complicated update operations with long latency. A

similar idea is explored in [36]–[38].

When accelerating the BQSR algorithm in GATK4.1, the

large size of histogram tables and long latency of floating

point table update make it impractical to simply duplicate the

computation or memory resources. Instead, in this work, we

introduce a novel small cyclic queue to buffer and quickly

merge potential conflicts to hide the histogram update latency.

The queue size is the same as the histogram update latency,

which is much smaller compared to the histogram table size.

Our design fully pipelines the processing element (PE) without

the need to replicate a large amount of computation or memory

resources. Only if there is enough computing and memory

resource will our fully-piplined PE duplicate (e.g., 4 copies on

the Xilinx VCU1525 FPGA board). Our architecture is highly

scalable in handling complicated and large-scale histogram-

based applications like BQSR.

B. Acceleration Leveraging UltraRAM
UltraRAM (URAM) is first introduced on Xilinx Ultra-

Scale+ devices which adds about 4x more on-chip mem-

ory [39]. The large volume of URAM enables designers to

buffer more data on-chip, saving off-chip communication and

improving the overall performance. It has been used by many

previous accelerator designs [40]–[43]. In this work, we use

URAM to buffer the histogram tables on-chip to enable fast

random access. The use of URAM often brings frequency

issues due to the long data wires. This issue can be alleviated

by either scattering the data and localizing them to each

PE [41], [43], or pipelining the data transfer onto multiple

checkpoints [29]. Since tiling is prohibited in BQSR due to

its random data access, we have chosen the second approach

that helps us increase the design frequency.

VI. CONCLUSION

In this paper, we presented the first algorithm and hardware

co-design to accelerate the Base Quality Score Re-calibration

(BQSR) algorithm in GATK4. This algorithm is an important

and time-consuming step to correct systematic errors of a

genome from a sequencing machine. To address BQSR’s

unique challenges of large covariate table size and random

meory access conflicts when updating the tables, we optimized

the algorithm by reducing its table size with a lower data

precision and resolving the memory access conflict with a

small cyclic queue that buffers and quickly merges potential

conflict accesses before updating the tables. At the hardware

design, we buffered the large tables on chip by leveraging

newly introduced URAMs, optimized its operating frequency,

and fully pipelined the accelerator design by implementing a

fast merge queue. Moreover, we also explored coarse-grained

pipeline and coarse-grained parallelism to achieve the optimal

performance of our BQSR accelerator. Compared to the single-

thread and 56-thread implementations running on the 14nm

dual socket Xeon E5-2680 v4 CPU server, our HLS-based

FPGA accelerator achieved up to 40.7x and 8.5x speedups on

Xilinx 16nm UltraScale+ VCU1525 board. We believe these

optimizations are not limited to the BQSR algorithm and can

be applied to other histogram-like algorithms.

ACKNOWLEDGEMENTS

We acknowledge the support from Center for Domain-

Specific Computing and its industrial partners, including

Huawei, Samsung, and VMWare; Natural Sciences and Engi-

neering Research Council of Canada (NSERC Discovery Grant

RGPIN-2019-04613 and DGECR-2019-00120); Simon Fraser

University New Faculty Start-up Grant; and Xilinx. We also

thank Brian Hill for earlier discussions, Marci Baun for editing

the paper, and Amazon for AWS credit donation.

164

REFERENCES

[1] G. S. Ginsburg and K. A. Phillips, “Precision medicine: From science
to value,” in Health Aff (Millwood), vol. 37, 2018, p. 694–701.

[2] National Human Genome Research Institute, “The cost
of sequencing a human genome,” 2019. [Online]. Avail-
able: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-
Human-Genome-cost

[3] Broad Institute, “Genome Analysis Toolkit (GATK) Best Practices,”
2019. [Online]. Available: https://software.broadinstitute.org/gatk/best-
practices/workflow?id=11145

[4] J. M. Besser, H. A. Carleton, P. Gerner-Smidt, R. L. Lindsey, and
E. Trees, “Next-generation sequencing technologies and their application
to the study and control of bacterial infections,” in Clinical Microbiology
and Infection: Official Publication of the European Society of Clinical
Microbiology and Infectious Diseases, vol. 24, 2017, pp. 335–341.

[5] H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM,” arXiv preprint arXiv:1303.3997, 2013.

[6] Broad Institute, “Genome Analysis Toolkit (GATK) 4,” 2019. [Online].
Available: https://github.com/broadinstitute/gatk

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation (NSDI), 2012, pp. 2–2.

[8] Intel, “Infrastructure for deploying GATK
best practices pipeline,” 2016. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/healthcare-
it/solutions/documents/deploying-gatk-best-practices-paper.html

[9] Y.-T. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-throughput
acceleration engine for read alignment,” in 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2015, pp. 199–202.

[10] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000 x acceleration on long read assembly,”
in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018, pp. 199–213.

[11] J. Cong, L. Guo, P.-T. Huang, P. Wei, and T. Yu, “Smem++: A pipelined
and time-multiplexed smem seeding accelerator for genome sequencing,”
in 2018 28th International Conference on Field Programmable Logic
and Applications (FPL). IEEE, 2018, pp. 210–2104.

[12] L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
FPGA and GPU,” in 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE,
2019, pp. 127–135.

[13] W. Tang, W. Wang, B. Duan, C. Zhang, G. Tan, P. Zhang, and N. Sun,
“Accelerating millions of short reads mapping on a heterogeneous archi-
tecture with FPGA accelerator,” in 2012 IEEE 20th International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2012, pp. 184–187.

[14] J. Arram, K. H. Tsoi, W. Luk, and P. Jiang, “Reconfigurable acceleration
of short read mapping,” in 2013 IEEE 21st Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2013, pp. 210–217.

[15] Intel, “Intel genomics kernel library,” 2019. [Online]. Available:
https://github.com/Intel-HLS/GKL

[16] N. Ahmed, V.-M. Sima, E. Houtgast, K. Bertels, and Z. Al-Ars,
“Heterogeneous hardware/software acceleration of the BWA-MEM DNA
alignment algorithm,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2015, pp. 240–246.

[17] Y. Yamaguchi, H. K. Tsoi, and W. Luk, “FPGA-based Smith-Waterman
algorithm: analysis and novel design,” in International Symposium on
Applied Reconfigurable Computing. Springer, 2011, pp. 181–192.

[18] Y.-T. Chen, J. Cong, Z. Fang, J. Lei, and P. Wei, “When Apache
Spark meets FPGAs: A case study for next-generation DNA sequencing
acceleration,” in Proceedings of the 8th USENIX Conference on Hot
Topics in Cloud Computing, ser. HotCloud’16. Berkeley, CA, USA:
USENIX Association, 2016, pp. 64–70.

[19] M. Ito and M. Ohara, “A power-efficient FPGA accelerator: Systolic
array with cache-coherent interface for Pair-HMM algorithm,” in 2016
IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS
XIX). IEEE, 2016, pp. 1–3.

[20] S. Huang, G. J. Manikandan, A. Ramachandran, K. Rupnow, W.-m. W.
Hwu, and D. Chen, “Hardware acceleration of the Pair-HMM algorithm
for DNA variant calling,” in Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA).
ACM, 2017, pp. 275–284.

[21] J. Wang, X. Xie, and J. Cong, “Communication optimization on GPU:
A case study of sequence alignment algorithms,” in 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE,
2017, pp. 72–81.

[22] Intel, “Accelerating genomics research with
opencl and fpgas,” 2017. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/healthcare-
it/solutions/documents/genomics-research-with-opencl-and-fpgas-
paper.html

[23] W. Qiao, J. Du, Z. Fang, M. Lo, M. F. Chang, and J. Cong, “High-
throughput lossless compression on tightly coupled CPU-FPGA plat-
forms,” in 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2018, pp.
37–44.

[24] J. Cong, Z. Fang, M. Huang, L. Wang, and D. Wu, “CPU-FPGA
coscheduling for big data applications,” IEEE Design & Test, vol. 35,
no. 1, pp. 16–22, 2018.

[25] P. Zhou, Z. Ruan, Z. Fang, M. Shand, D. Roazen, and J. Cong, “Doppio:
I/O-aware performance analysis, modeling and optimization for in-
memory computing framework,” in 2018 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), April 2018,
pp. 22–32.

[26] Broad Institute, “Base quality score recalibration
methods and algorithms,” 2018. [Online]. Available:
https://software.broadinstitute.org/gatk/documentation/article?id=11081

[27] Amazon, “Amazon EC2 F1 instance,” 2019. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

[28] Xilinx, “Vivado design user guide,” p. 548, 2018. [Online]. Available:
https://www.xilinx.com/support/documentation/sw manuals/xilinx2018
3/ug902-vivado-high-level-synthesis.pdf

[29] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Latte: Locality aware
transformation for High-Level Synthesis,” in 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2018, pp. 125–128.

[30] N. Cai, T. B. Bigdeli, W. Kretzschmar, Y. Li, J. Liang, L. Song, J. Hu,
Q. Li, W. Jin, Z. Hu et al., “Sparse whole-genome sequencing identifies
two loci for major depressive disorder,” vol. 523, no. 7562. Nature
Publishing Group, 2015, p. 588.

[31] A. F. Gazdar, V. Kurvari, A. Virmani, L. Gollahon, M. Sakaguchi,
M. Westerfield, D. Kodagoda, V. Stasny, H. T. Cunningham, I. I.
Wistuba et al., “Characterization of paired tumor and non-tumor cell
lines established from patients with breast cancer.” JOHN WILEY &
SONS LTD, 1998.

[32] Illumina, 2019. [Online]. Available:
https://support.illumina.com/downloads.html

[33] IGSR: The International Genome Sample Resource,
“1000 genomes project data,” 2019. [Online]. Available:
https://www.internationalgenome.org/data

[34] K. S. Gautam, “Parallel histogram calculation for FPGA: Histogram
calculation,” in 2016 IEEE 6th International Conference on Advanced
Computing (IACC). IEEE, 2016, pp. 774–777.

[35] L. Maggiani, C. Salvadori, M. Petracca, P. Pagano, and R. Saletti,
“Reconfigurable architecture for computing histograms in real-time
tailored to FPGA-based smart camera,” in 2014 IEEE 23rd International
Symposium on Industrial Electronics (ISIE). IEEE, 2014, pp. 1042–
1046.

[36] A. Shahbahrami, J. Y. Hur, B. Juurlink, and S. Wong, “FPGA implemen-
tation of parallel histogram computation,” in 2nd HiPEAC Workshop on
Reconfigurable Computing. Published, 2008, pp. 63–72.

[37] J. H. Ahn, M. Erez, and W. J. Dally, “Scatter-add in data parallel
architectures,” in 11th International Symposium on High-Performance
Computer Architecture. IEEE, 2005, pp. 132–142.

[38] M. Hosseinabady and J. L. Núñez-Yáñez, “Pipelined streaming compu-
tation of histogram in FPGA OpenCL,” in PARCO, 2017, pp. 632–641.

[39] Xilinx, “UltraRAM: Breakthrough embedded memory
integration on UltraScale+ devices,” 2019. [Online]. Available:
https://www.xilinx.com/support/documentation/white papers/wp477-
ultraram.pdf

[40] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN: An
open framework for mapping DNN models to cloud FPGAs,” in Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). ACM, 2019, pp. 73–82.

165

[41] Xilinx, “Xilinx ML suite,” 2019. [Online]. Available:
https://github.com/Xilinx/ml-suite

[42] M. Zhang, L. Li, H. Wang, Y. Liu, H. Qin, and W. Zhao, “Optimized
compression for implementing convolutional neural networks on FPGA,”
Electronics, vol. 8, no. 3, p. 295, 2019.

[43] X. Wei, Y. Liang, X. Li, C. H. Yu, P. Zhang, and J. Cong, “TGPA:
tile-grained pipeline architecture for low latency CNN inference,” in
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2018, pp. 1–8.

166

