
Exploring Writeback Designs for Efficiently
Leveraging Parallel-Execution Units in

FPGA-Based Soft-Processors

Eric Matthews, Yuhui Gao and Lesley Shannon
School of Engineering Science, Simon Fraser University

{ematthew, yuhui gao, lshannon}@sfu.ca

Abstract—Maximizing processor performance depends on
maximizing the product of instruction throughput and clock
frequency. Writeback mechanisms and forwarding networks
heavily impact both of these properties along with the resource
usage and scalability of the processor design. Furthermore, these
mechanisms are typically multiplexer heavy which can make their
implementation resource inefficient on FPGAs.

In this paper, we explore multiple different writeback and
result storage mechanisms using an FPGA-based RISC-V
soft-processor (Taiga), exploring both exception-safe and non-
exception-safe designs. Writeback mechanisms based on per-unit
result storage and centralized storage are explored while leverag-
ing FPGA specific resources such as LUTRAMs. We evaluate the
designs based on their impact on instruction throughput, proces-
sor frequency, and scalability of both simultaneous instructions
in-flight and the number of execution units. As each design has
different characteristics, we focus on comparing and contrasting
the designs. We find that across all designs, average IPC can vary
by up to 11%, with a few designs reaching the maximum IPC of
one for some benchmarks. Clock frequency is found to vary by
up to 20% across the designs, but is not significantly impacted
when increasing the number of execution units. Scaling up the
instructions in-flight is found to have the greatest variability, with
LUT usage increasing by 3% to 93% across the different designs.
Overall, we find that under current constraints, a commit-buffer
design provides the highest combination of performance and
performance per LUT.

I. INTRODUCTION

Recently, with the emergence of the RISC-V ISA [1],

there has been an increase in the number of soft-processor

designs [2]–[5] for FPGAs. Two of these newer processors,

both FPGA-based, ORCA [2] and Taiga [3] implement more

flexible execution pipelines by structuring their designs with

parallel execution units. An advantage of these designs is that

it can be easier to integrate custom accelerators with varying

latencies and achieve higher Instruction Level Parallelism

(ILP), and thus performance, than a fixed-pipeline based

design. However, parallel-execution units present additional

design challenges over fixed-pipeline designs as they allow

for both increased number of instructions in-flight and for

the simultaneous completion of instructions. Handling simul-

taneously completing instructions is the responsibility of the

writeback network.

While most components of a processor require careful de-

sign to not negatively impact clock frequency in an optimized

design, the writeback network is of particular importance due

to its high connectivity. As it interfaces with both the issue

logic and all of the execution units, it can potentially impact

many critical paths within the processor’s pipeline and the

routability of the design. Additionally, this network, along

with the forwarding of results requires careful design as it is

typically multiplexer heavy which are more costly for FPGA-

based designs [6].

In this paper, our goal is to explore writeback storage and

forwarding mechanisms for FPGA-based parallel-execution

units to evaluate how to effectively leverage their execution

resources. As such, it important that other processor compo-

nents, such as the execution units and branch predictor are not

the limiting factor in the processor’s performance. Thus, based

off of the study by Matthews et al. which found Taiga to have

higher IPC and runtime performance than ORCA [7], we have

selected the Taiga processor as the baseline for this work. Even

though we have selected Taiga for this work, the outcomes

of this study would be applicable to any other FPGA-based

soft-processor design with parallel-execution units including

ORCA [2].

Our paper explores three different writeback storage and

forwarding mechanisms: (per-unit ID-buffers, commit-buffer,

and ID-banked register file) in addition to the baseline sourced

from Taiga. We find that our exception-safe commit-buffer
design is able to achieve a 6% increase in IPC over the non-

exception-safe commit variant of Taiga [7]. The performance

improvement further increases to 11% when compared against

the exception-safe variant. In terms of performance per LUT,

the commit-buffer design ties the baseline in resource effi-

ciency while providing higher throughput. Additionally, we

explore the scalability of the designs focusing on their ability

to support additional execution units and greater numbers of

in-flight instructions. Specifically, in this paper we present:

• three new writeback and storage mechanisms: commit-
buffer, per-unit ID-buffers, and ID-banked register file,

• a thorough analysis of IPC, frequency and resource usage

of the designs, and

• an exploration of the scalability of the designs.

The remainder of this paper is organized as follows. Section II

covers related work on FPGA-based soft-processors and pro-

vides background on the Taiga processor. Section III presents

the writeback storage and forwarding mechanisms studied in

120

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00025

this paper. Section IV presents a comparison and analysis of

the performance characteristics of the various designs. Finally,

section V presents an analysis of the scalability of the designs

before the conclusion of the paper.

II. BACKGROUND

For fixed-pipeline processors, researchers have explored

many aspects of their design. General architecture studies have

been performed on fixed-pipelines [8] along with studying

the impact of forwarding on deeply pipelined DSP-based

processors [9]. For parallel-execution unit designs, there is

an advantage in forwarding networks in that results are not

propagated through additional stages if they complete early,

such as common ALU operations. As such, the writeback

network itself can be leveraged for forwarding results.

Much of the soft-processor research focuses on processor

features that are independent of how the execution logic is

structured. This includes work on features such as branch

predictors [10] and more complex functionality such as multi-

threading [11] [12] and runahead execution [13]. As this

paper focuses on exploring writeback mechanisms to lever-

age parallel-execution units, these works are orthogonal and

complementary to the focus of this paper.

Superscalar out-of-order processors also feature parallel

execution units, however, the mapping of ASIC designs to

FPGA fabrics has been found to be inefficient [14] [15].

Research on FPGA optimized components of superscalar out-

of-order processors such as the reorder buffer [16], instruction

schedulers [17] or memory hierarchies [18] has resulted in

better scaling and higher operating frequencies, however they

still require large amounts of FPGA resources.

The Taiga processor, which has been selected as the baseline

for this work, supports a mechanism called “early-commit” [7]

for increasing throughput of its execution units, however, it is

not exception safe, and as we find in this paper, its exception-

safe variant comes at a cost in throughput. As some embedded

system designs will require exception-safe operation, in this

work we explore writeback mechanisms that are inherently

exception safe without performance loss.

A. Taiga Overview

The Taiga processor [3] is a single-in-order issue processor.

It supports an early-commit behaviour allowing instructions

to complete out-of-order with both exception-safe and non-

exception-safe variants. A high-level overview of the processor

is presented in Figure 1. The figure highlights the main stages

of the processor’s pipeline and the performance characteristics

of each of the execution units. As can be seen in the figure,

there are six execution units in total (Br, ALU, Mul, Div, CSR,

LS), however, the branch unit (Br) does not have a connection

to the writeback logic and the CSR unit and Load Store unit

share a connection. For each unit, the upper number represents

the latency of the unit and the lower number the rate at which

the unit’s datapath can begin a subsequent instruction.

D

ecoddde andd Issue

LLSS

Fetch

3/4+

BBr
1

1
AALLUU
1

1
CCSSRR
3+

3+
MMull
3

1 1+

2/4+

2/4+
DDiiv

unit latencies

initiation intervals

Writeback

Fig. 1. Taiga Block Diagram. Upper unit numbers represent the unit’s latency.
Lower unit numbers represent the rate at which a unit can start additional
requests. Plus symbols indicate a minimum bound and slashes indicate their
are multiple latency paths within the unit. Blue outlined sections indicate
components modified in this paper.

Taiga was sourced from its repository [19], specifically,

commit1 with fixes back-ported. We have highlighted in blue

the components of the processor that are modified in this work.

This includes the register file and register bypassing inside of

the issue logic as well as unit result storage and the writeback

infrastructure.

III. WRITEBACK DESIGNS

A major difference between fixed-pipeline designs and

parallel-execution unit designs is that parallel designs can

support both simultaneous and out-of-order completion. The

actual IPC improvements that can be extracted from parallel

execution depend on the constraints differing designs place on

the execution units and the application itself.

In this section, we present three new writeback mechanisms

called: per-unit ID-buffers, commit-buffer, and ID-banked reg-
ister file. We also analyze the early-commit implementation

of Taiga [7], which we use as a baseline. Figure 2 presents

all four designs highlighting the datapath aspects that change

between the designs. Each system will be discussed in detail

in the following sections.

1) Design Commonalities: Taiga uses an ID tracking sys-

tem for all instructions that write to the register file or memory.

On issue, these instructions are assigned an ID that is used

to track their order and to handle Read-After-Write (RAW)

hazards [7]. IDs for instructions are propagated, along with the

instruction, through their execution unit. Figure 3 highlights

the interface of the execution units. Signals in red are the

control signals that remain the same for all designs. The

accepted signal, highlighted in blue, is used only for the early-
commit design. In all designs, with the exception of the ID-
banked register file design, the done and ID signals on the

writeback side will set a flag marking the ID as done and

pending for writeback to the register file. Once the instruction

has been committed the flag is cleared and that ID becomes

available again for reuse.

While each design changes how results from execution units

are stored, the latency and throughput characteristics of each

execution unit remains constant across all designs.

1gitlab.com/sfu-rcl/Taiga (ae32ecd72fc47b350a5c8232868d0f56baf66628)

121

Bypass
muxes

Execution
Units

Per-unit register
or FIFO storage

(a) early-commit

Bypass
muxes

Execution
Units

Per-unit ID-based
LUTRAM storage

(b) per-unit ID-bu ers

Execution
Units

ID-based
commit bu er

(c) commit-bu er

Bypass
muxes

Execution
Units

Per-ID
register file

(d) ID-banked register file

muxes
register fileRegister

file
Register
file

Register
file

LVT

Fig. 2. Writeback and forwarding datapaths. Diagrams show Issue through Writeback stages of the processor. Shaded sections highlight the major datapath
differences between the designs. In subfigures (c and d), as writeback storage is ID-based, there is an additional layer of muxes that select between the
execution units for each storage element. In subfigure (d), the register file is split between the issue and writeback stages to highlight its connectivity to both
stages.

result

ID
done

accepted

ready

new_request
ID
data inputs

Issue Writeback

Fig. 3. Execution unit interfaces. Red signals are the control signals and are
constant across all designs with the exception of accepted, highlighted in blue,
which is used only by the original Taiga design.

2) General Forwarding Considerations: The RISC-V base

integer ISA, including the Multiply and Divide extensions,

contains instructions with at most two source operands, la-

belled rs1 and rs2. As such, in any design with register file

bypassing, there are two bypass muxes, one for each operand.

We added tracing support to Taiga looking at how often the rs1
vs rs2 operands utilized a forwarded result and found that it

was benchmark dependent. While most benchmarks saw more

frequent usage of rs1 forwarding, in some benchmarks it was

the other way around.

A. Early-Commit

The baseline for our investigation is the “early-commit”
from the existing open-source Taiga repository and is shown

in Figure 2 (a).

1) Storage Mechanism: In early-commit, storage of instruc-

tion results is implemented on a per-unit basis. Simple units,

such as the ALU, have the result stored in Flip-Flops, whereas

the Load Store unit uses a FIFO for the output. Matthews

et al. [7] presented the rational for the FIFOs as providing

decoupling between the issue and writeback stages as well as

providing control signal isolation.

2) Forwarding Support: In this design, not all results are

visible at the writeback stage due to the use of FIFOs on the

outputs of some units such as the Load Store and Division

units. As such, the only result that can be forwarded to the

issue stage is the result that is being committed to the register

file on any given cycle.

This design is capable of both exception-safe and non-

exception safe behaviour. While operating in non-exception

safe mode, instructions can be committed to the register file

out-of-order. Every cycle, the oldest instruction that is ready

to write to the register file is committed even if it is not the

oldest instruction in-flight. For exception-safe behaviour, if no

in-flight instruction can cause an exception, the behaviour of

the non-exception safe mode is used. When an exception can

occur, as is the case for load/store operations, instructions are

committed in-order until the exception status of the load/store

instruction(s) has been resolved. Tracking of instructions is

performed by a stack structure that maintains an ordering of all

IDs. On any given cycle, any active ID can be retired from any

location within the stack. Additionally, on any given cycle, a

store operation can also be committed in parallel with a retired

instruction requiring two updates to the stack.

3) Specific Strengths and Weaknesses: As simple units such

as the ALU just register their output, there is no additional

LUT usage overhead for storage of results making this storage

mechanism resource efficient. However, as some units utilize

FIFO outputs, not all instruction results are visible at the

writeback stage thus limiting forwarding options. Additionally,

as units such as the ALU can only hold one result at a time, if

a subsequent instruction requires the ALU it cannot be issued

until the ALU’s result has been accepted by the writeback

stage. This type of structural hazard is similar to a fixed-

pipeline limitation where any instruction that stalls in the

execute or memory stage blocks the progress of subsequent in-

structions. Finally, while not all embedded systems will require

load/store exceptions, in systems that to do, the performance

penalty of exception-safe behaviour can be as high as 10% as

will be shown in the following section.

B. Per-Unit ID-Buffers

A potential solution to the weakness of the early-commit
design is demonstrated in our per-unit ID-buffers design shown

in Figure 2 (b). Unlike early-commit, this design is always

exception safe, can forward any completed result and removes

the structural hazard of the early-commit design. Instead, it is

constrained by the processor’s limit on instructions-in-flight.

1) Storage Mechanism: As a possible solution to the struc-

tural hazards and incomplete result visibility of the early-
commit design, the mix FIFOs and register storage is replaced

with per-unit LUTRAMs that store the result indexed by the

instruction’s ID.

2) Forwarding Support: As seen in Figure 2(b), instruction

results are stored in LUTRAMs and multiple read ports can

be utilized to support both accessing results for operand

forwarding and by the writeback mux for committing to the

register file.

3) Other changes: As instructions are not issued if there

are no available IDs, there will always be space in the per-unit

122

buffer to store the instruction’s result. Additionally, IDs are not

recycled until the result has been committed to the register file.

As such, the units no longer need an acknowledgment that the

instruction has been committed. This results in a simplification

and reduction of control logic for the units. With this setup,

all units in the processor can now accept an instruction on

any cycle and thus have their ready signals tied to one. The

limitation in execution resources is now the number of IDs

supported, ie. the maximum number of in-flight instructions.

By increasing the storage capacity of each unit, and ex-

posing all completed results to the forwarding logic, the

opportunistic early-commit behaviour of the previous design

no longer improves the IPC. As such, the ID stack is replaced

in this design with two simple counters (modulo the max

number of instructions-in-flight) that keep track of the issue ID

and the oldest non-committed ID. Instructions are then always

committed in-order and thus, always exception safe. Stores are

still completed in parallel with other instructions in this design,

with the retired counter incremented by two instead of one.

4) Specific Strengths and Weaknesses: Compared to early-
commit, per-unit ID-buffers provides increased result storage

and greater access to results for operand forwarding, both

of which we expect to improve the IPC of the processor.

However, LUT usage is increased due to the switch from

Flip-Flop based storage to LUTRAM based storage with

approximately 72 LUTs required per unit. Additionally, not all

LUTs can be configured as LUTRAMs, which may increase

routing delays in the design. In this paper, maximum in-flight

counts of four and eight are evaluated; however, due to this

design’s use of LUTRAMs for storage, ID limits of up to 32

can be supported without increasing the LUTs required for the

ID-buffers on Xilinx FPGAs.

C. Commit-Buffer

The commit-buffer design, shown in Figure 2 (c), shares

much in common with the per-unit ID-buffers design, but

differs primarily in its result storage mechanism.

1) Storage Mechanism: The commit-buffer result storage is

centralized within an ID-based writeback buffer implemented

with Flip-Flops, rather than on a per-unit basis. As multiple

writes could occur per cycle, we have chosen to implement this

structure with Flip-Flops as opposed to LUTRAMs as there is

already additional delay due to the unit select muxes compared

to the per-unit ID-buffers design. Additionally, for each ID’s

storage, all units’ outputs must be muxed as shown in Figure 2.

As such, the number of muxes scales with the number of IDs

and in depth by the number of writeback units.

2) Forwarding Support: Forwarding support for the

commit-buffer design is the same as in the per-unit ID-buffers
design; however, the forwarding mux and writeback mux

scales based on the number of IDs as opposed to the number

of execution units.

3) Specific Strengths and Weaknesses: The commit-buffer

design shares the same throughput aspects as the per-unit ID-
buffers design, differing only in how the instruction results are

stored. However, this storage difference is expected to have a

significant impact on the frequency and scalability of these

two designs.

D. ID-Banked Register File

The last design studied in this work is an ID-banked register
file based design and is shown in Figure 2 (d).

1) Storage Mechanism: In the ID-banked register file de-

sign, the storage mechanism for instruction results is the

register file itself. As an instruction completes, its result is

immediately written to the register file. Instead of a single

register file, this design replicates the register file based on the

number of IDs (instructions in-flight) supported. Tracking of

the most recently updated ID-bank is handled by a Live-Value-

Table (LVT) (that already existed in Taiga for ID tracking and

forwarding purposes [7]). Like the commit-buffer design, this

design centralizes the storage of results and requires muxing

between all unit outputs for each register file bank.

2) Forwarding Support: As can be seen Figure 2, unlike

the other designs, there is no forwarding mechanism for this

design as all operands are sourced directly from the register

file. While there is no forwarding, there is still an additional

mux to select between the ID banks based off of the LVT.

3) Other changes: In all other designs, only a single

instruction is committed to the register file in any given cycle.

In this design, up to the ID limit can be written in a single

cycle. Most of the existing writeback logic was able to be

retained. However, the tracking of in-use/available IDs and the

tracking of which registers are in-use needed to be changed.

As previously mentioned regarding the writeback logic of the

other designs, when an instruction completes, a flag is set for

that ID to indicate that a pending commit operation is required.

For the ID-banked register file design, instead, a bit is set when

an instruction is issued. The next ID is then found by scanning

this bit vector for the first unused/unset ID.

For register in-use tracking, the existing component, an xor-

based 2 write-port LUTRAM, had to be replaced. For the

previous designs, two write ports is sufficient as there were at

most two updates per cycle, one from the issuing instruction

and one from the committing instruction. For the ID-banked
register file design there can now be multiple commits in

a cycle. To support this, instead of storing in-use bits per

register, the destination register for each ID is stored and

compared against the issuing instruction’s operands to check

for conflicts. As the checks need to be made against all IDs

this is implemented as a CAM structure.

4) Specific Strengths and Weaknesses: While the per-unit
ID-buffers and commit-buffer designs are inherently exception-

safe in their operation, the ID-banked register file design is not

inherently exception-safe, similar to the early-commit design.

As instructions commit as soon as they complete, its possible

for an instruction to commit before the exception status of a

previously issued instruction is known. To make the design

exception-safe we explored a simple change. As the Load

Store unit is the current source of potential exceptions, once a

Load Store instruction has been issued, no issues to other units

can occur until the exception status of all load/store operations

123

TABLE I
RESOURCE USAGE AND OPERATING FREQUENCY COMPARISON

LUTs FFs Freq (MHz)
early-commit 1927 811 121.6

per-unit ID-buffers 2185 (+13%) 763 (-6%) 97.2 (-20%)
commit-buffer 2047 (+6%) 869 (+7%) 119.7 (-1.6%)

ID-banked register file 2071 (+7%) (-3%) 785 106.2 (-13%)

has been resolved. Multiple loads and stores can be in-flight

at once as, if an exception does occur, the input buffer to the

load store unit can be flushed.

The key feature of the ID-banked register file is that it

can commit multiple instructions per cycle. This may not

have significant benefits for a single-issue processor design,

but it may strongly impact a multi-issue processor design’s

efficiency. Additionally, compared to the per-unit ID-buffers
and commit-buffer buffer designs, this design does not have to

wait for instructions to be written from intermediate storage

to the register file. Thus, it is less likely than the other designs

described herein to run out of available IDs.

IV. DESIGN PERFORMANCE COMPARISON

In this section, we provide a performance comparison of

the four different writeback mechanisms, focusing on IPC,

frequency and resource usage.

For our test configuration, a high performance baseline will

enable us to properly evaluate the impact of the different

writeback designs. If other aspects of the processor, such as

branch prediction or execution unit performance significantly

limit performance, then the impact of the writeback design

choice would be nominal. As such, we have configured the

processor for the RV32IM ISA with the following feature set:

• 2-way 512-entry set-associative 2-bit saturating branch

predictor with an 8-entry Return Address Stack (RAS)

• hardware multiply and variable latency divider [20]

• max in-flight count of 4 IDs

Additionally, our setup is configured with 64KB of local

memory to support the benchmarks used in this paper.

A. Resource Usage and Frequency Results

Table I, presents resource usage and frequency results

obtained with Vivado 2019.2 for a Zynq X7CZ020 FPGA

(Zedboard). Percent increases in resource usage are provided

relative to the early-commit design sourced from the Taiga

repo [19]. For the early-commit and ID-banked register file
designs, we found that the difference between the exception-

safe and non-exception safe variants did not impact frequency

results or change LUT usage by more the a couple LUTs and

thus, just the non-exception-safe results are presented here.

As all processor configurations require two BRAMs (for the

branch predictor) and four DSPs (for the multiplier), they are

excluded from the table.

We can see that all designs have additional resource over-

head compared to the early-commit design. This is to be

expected since all designs have additional muxes and storage

elements compared to the early-commit design as discussed

in the previous section. The largest increase is for the per-
unit ID-buffers design with a 13% increase in LUT usage. For

this design, the largest increase in resources comes from the

storage change from registers (for units such as the ALU) to

the per-ID LUTRAMS. For the ALU, this results in an increase

of approximately 72 LUTs (24 LUTs per LUTRAM output).

Reducing the number of forwarding operands can thus

reduce resource usage. In our analysis of the benchmarks

used in this paper, we found that forwarding of both operands

occurred only 2% of the time, on average. However, the

forwarding logic needs the IDs of the instructions that rs1

and rs2 are waiting on. To share a read port, we must first

determine if they are waiting on a result before selecting which

one to use to access the LUTRAM. This additional delay in

arbitrating the LUTRAM read port further lowered the clock

frequency of the per-unit ID-buffers design. As this design

already has the lowest operating frequency, we consider this

change to be undesirable.

The increase in LUTs for the commit-buffer design over

early-commit comes from the increase in muxes both for for-

warding and for storing to the commit-buffer itself. Similarly,

for the ID-banked register file design the increase is also

primarily from the additional writeback muxes and the cost of

the additional register file banks (48 LUTs per bank). However,

both of these designs are only a modest increase in resources

at 6% and 7% respectively over the early-commit design with

the commit-buffer design being inherently exception safe.

In terms of frequency, the early-commit and commit-buffer
designs are within the variability we find with the Vivado tools

when making small changes in our designs. In all designs, we

find that the critical path is from the source operands through

the ALU to whichever storage mechanism is used. With the

per-unit ID-buffers and ID-banked register file designs, we

see larger decreases in operating frequency of -20% and -13%

respectively. The additional costs for these two designs come

from the additional delays of the LUTRAMs compared to the

Flip-Flop storage.In the case of the per-unit ID-buffers design,

rather than storing the ALU result in a register that is paired

with the LUT that generated the result, it must now route to

another LUT. This additional LUT may also be in a different

column, as not all logic blocks support LUTRAMs in Xilinx

FPGAs. Additionally, the LUTRAMs’ data-access and storage

times have additional delay compared to the registers’ data-

access and storage times. As the critical path starts and ends in

LUTRAMs in these designs, this results in additional delays to

what was already a critical path in the design. While the ALU

datapath is typically the critical path in the processor (and also

the only single cycle unit), during development the variable

latency divider and branch prediction logic were sometimes

reported as the critical paths in the design.

B. Performance Results

To evaluate the performance of the different writeback

mechanisms, we have selected the Embench [21] bench-

mark suite; a relatively new benchmark suite designed for

benchmarking embedded processors. All benchmarks are built

124

0

0.2

0.4

0.6

0.8

1

aha-mont64
crc32

cubic edn

hu bench

matm
ult-i

nt
minver

nbody

nettle
-aes

nettle
-sh

a256

nsichneu

pico
jpeg

qrduino

sglib-co
mbined slre st

sta
temate ud

wikiso
rt

average

geomean

IP
C

early-commit early-commit per-unit ID-banks commit-bu er ID-banked registerfile ID-banked registerfile

0

20

40

60

80

100

120

aha-mont64
crc32

cubic edn

hu bench

matm
ult-i

nt
minver

nbody

nettle
-aes

nettle
-sh

a256

nsichneu

pico
jpeg

qrduino

sglib-co
mbined slre st

sta
temate ud

wikiso
rt

average

geomean

M
IP

S

0

0.2

0.4

0.6

0.8

1

1.2

aha-mont64
crc32

cubic edn

hu bench

matm
ult-i

nt
minver

nbody

nettle
-aes

nettle
-sh

a256

nsichneu

pico
jpeg

qrduino

sglib-co
mbined slre st

sta
temate ud

wikiso
rt

average

geomean

M
IP

S
/L

U
T

 n
o

rm
a

li
ze

d
exception-safenon-exception-safe exception-safe exception-safe exception-safenon-exception-safe

Fig. 4. Embench benchmarks: IPC, MIPS and MIPS per LUT (normalized to non-exception-safe early-commit) per writeback mechanism

0

0.2

0.4

0.6

0.8

1

aha-mont64
crc32

cubic edn

hu bench

matm
ult-i

nt
minver

nbody

nettle
-aes

nettle
-sh

a256

nsichneu

pico
jpeg

qrduino

sglib-co
mbined slre st

sta
temate ud

wikiso
rt

S
ta

ll
s

p
e

r
In

st
ru

ct
io

n

operand(s) not ready

unit not ready

no ID available

no instruction

multiple causes

early-commit exception-safe
early-commit non-exception-safe

commit-bu er

le -to-right:

Fig. 5. Breakdown of issue stall sources per benchmark and writeback mechanism

with GCC 9.1.0 and compiled with -O2 optimization. Data

collection is performed with Verilator [22] to facilitate the

collection of additional trace information for evaluating our

designs. For the performance results, both the exception-safe

and non-exception-safe variants of the early-commit and ID-
banked register file designs are included as they impact the

throughput of the designs.
As a measure of how well each writeback mechanism is able

to leverage the parallel execution-units, we present IPC results

for designs in the upper section of Figure 4. While commit-
buffer and per-unit ID-buffers design results have identical

operation, they are both included in the graph for consistency

with the other result graphs. We can see that even the baseline

system, early-commit, has a high average IPC of over 0.8 with

the one exception of the nsichneu benchmark that will be

explained in the following section. As this is a single-issue

processor, an IPC of one is the upper performance bound. In

the case of the crc32 benchmark, the commit-buffer, per-unit
ID-buffers, and non-exception-safe ID-banked register file are

all able to achieve an IPC of effectively one (0.997). These

three systems achieve a 6% increase in IPC over the early-
commit non-exception-safe design and an 11% increase over

the exception-safe mode on average. While the commit-buffer
and per-unit ID-buffers designs are inherently exception-safe,

we see that the exception-safe variants of early-commit and

ID-banked register file, are most often slower than their non-

exception-safe counterparts with early-commit being impact-

ing by over 4% on average and ID-banked register file by

over 8% on average. If more exception sources are added to

the system, we expect these numbers to grow as neither of

these designs allow exceptions from multiple sources to be

possible at any given time. For example, if a new unit was

added that could cause an exception, instructions would not

be able to be issued to the Load Store unit while an exception

was possible in the new unit and vice versa.

As was discussed when the designs were presented, a

potential advantage of the ID-banked register file design is that

it can commit multiple instructions per cycle. As such, it is

less likely to run out of IDs. However, in practice we find that

in the best case on the wikisort benchmark, the performance

improvement is only 0.3% over the commit-buffer design.

While IPC provides a measure of how well the processor’s

execution resources are leveraged, it does not provide a full

performance comparison as it does not reflect differences in

125

operating frequency. For this comparison, we have scaled the

IPC by the operating frequencies of each design to report

performance in Millions of Instructions Per Second (MIPS)

as shown in the middle section of Figure 4. In this figure,

we can see that while per-unit ID-buffers and ID-banked
register file have the same IPC as the commit-buffer design,

their overall performance is lower due to their lower clock

frequency. Overall, the commit-buffer buffer design is found

to have the highest throughput with an average MIPS of 105

for a zedboard based design, a 5% increase over early-commit
non-exception-safe and 9% over the exception-safe variant.

1) Tracing Infrastructure: To better understand the perfor-

mance bottlenecks in the processor, we added tracing infras-

tructure to capture the causes for stalls in the issue stage

of the processor. Specifically, we looked at capturing when

there was an issue stall exclusively due to: missing operands,

the required unit not being ready to accept a new request,

having no ID available for issue, having no instruction at the

issue stage (branch flush or delay from a miss-predict), or

a combination of these conditions. Additionally, we recorded

how often the forwarding logic was needed for each design

along with branch prediction accuracy.

Figure 5 presents the breakdown of stall sources for

exception-safe and non-exception safe early-commit and for

the commit-buffer design normalized to the number of in-

structions executed in each benchmark. Per-unit ID-buffers is

not included as it has identical performance characteristics as

the commit-buffer design, and ID-banked register file is not

included as it is only different in IPC from the commit-buffer
by less than a tenth of a percent. From this figure, we can see

that the largest improvement in performance from the commit-
buffer design comes from reducing stalls due to units not being

ready to accept new requests. For many benchmarks, these

stalls account for over half of the total issue stalls. While in

many cases the operand stalls do not decrease between the

systems, it is possible that by removing the unit stalls more

operand stalls could occur. However, in some benchmarks like

crc32 and huffbench we do see a further reduction in operand

stalls. The no ID available stall is not visible in this plot as

its at most 1% of the stalls (st) and, on average, less than a

tenth of a percent. The no instruction stalls are a result of the

delays incurred by branch miss-predicts. The multiple source

category disappears from the commit-buffer based design as

the only overlaps that are now possible involve overlaps with

no ID’s being available, which themselves were already found

to be a negligible percentage of the stalls.

The nsichneu benchmark is the largest outlier in this set

of benchmarks. To understand its behaviour we further broke-

down what type of instruction (alu, branch, etc) were stalled

waiting for their operands. In doing so, we found that the stalls

were due to branches waiting for their operands. Looking at

the dissasembly of this program, we found short instruction

sequences with loads followed immediately by a branch in-

struction, thus the branch must wait 2 cycles for its operand.

The only way to significantly improve the performance of this

benchmark, from a hardware perspective, would be to either

reduce the latency of load operations or allow speculative

execution of branches. As designs such as the commit-buffer
and per-unit ID-buffers buffer results before writing to the

register file, both of these designs would be perfect candidates

to explore limited speculative execution. For the remainder of

the benchmarks, we find that the operand stalls were roughly

split between ALU operations waiting for their operands and

branch instructions waiting for their operands.

Finally, we report MIPS per LUT in the lower section of

Figure 4 normalized to non-exception-safe early-commit. Here,

we can see that while all designs developed in this paper

improve IPC, only the commit-buffer design does so while

retaining performance per LUT efficiency with only a 1%

difference between it and the early-commit design.

In summary, we find that all of the new designs are

able to achieve higher IPC than the baseline Taiga early-
commit design by avoiding contention for execution units and

providing improved forwarding of results. Of the new designs

explored, commit-buffer is found to provide a 6% increase

in IPC over non-exception-safe early-commit while being

exception-safe itself and providing equivalent performance per

LUT. When comparing against exception-safe early-commit,
this improvement rises to an 11% IPC improvement.

V. SCALABILITY OF DESIGNS

In the previous section, we analyzed the performance of the

different writeback mechanisms based on their performance on

a embedded benchmark suite. In this section, we explore how

the designs scale with the addition of extra execution units

and support for additional in-flight instructions.

A. Scaling Support for Additional Execution-Units

To begin with we explore how increasing the number of

execution units impacts the resource usage and operating

frequencies of the designs. To ensure that the impact is mostly

from the differing writeback implementations and not due to

the impact of the unit itself, a reference-unit was developed

that has a minimal resource footprint while still fully utilizing

the register file and writeback stage. As such, the reference-

unit accesses two register inputs, XOR’s them with a constant

and registers them based on the issue signal for the reference

unit. On the second cycle, the two results are XORed together.

It has a baseline cost of 64 LUTs and 70 FFs.

1000 1500 2000 2500 3000 3500 4000

early-commit

per-unit ID-bu ers

commit-bu er

ID-banked register file

0 500

early-commit

per-unit ID-bu ers

commit-bu er

ID-banked register file

Fig. 6. LUT usage scaling with increasing numbers of reference-units

Table II presents a resource and frequency comparison of

the systems with eight additional units, with percentage change

relative to each system’s baseline from Table I. Figure 6

presents the LUT scaling per additional reference-unit for each

of the designs. We find that the per-unit ID-buffers design has

126

TABLE II
DESIGN SCALING WITH 8 ADDITIONAL REFERENCE-UNITS

LUTs FFs Freq (MHz)
early-commit 2547 (+32%) 1641 (+102%) 114.7 (-5.7%)

per-unit ID-buffers 3587 (+64%) 1608 (+53%) 90.2 (-7.2%)
commit-buffer 3306 (+62%) 1702 (+96%) 113.5 (-5.2%)

ID-banked register file 2987 (+44%) 1658 (+111%) 106.0 (-0.2%)

both the largest increase in LUT usage and the largest usage

overall. As the per-unit ID-buffers design stores its results in

LUTRAMs, every additional unit in this design will have a

higher overhead than the other designs.

We can see from Figure 6 that as units are added to

the designs some incremental increases are much larger than

others, particularly for the commit-buffer design. These points

correspond with writeback unit muxes crossing boundaries

that require additional LUTs or levels of logic to implement.

In terms of frequency, we can see that all designs scale

acceptably, with the ID-banked register file design seeing no

impact after adding eight units (-0.2%) and early-commit and

commit-buffer with degradations of only approximately 5%.

Since all designs show reasonable frequency scaling, as a

final metric we can look at how much overhead is added,

on average, (across the additional 8 units) when subtracting

out the unit cost. In this way, we have a rough measure of

how much overhead each additional unit requires. For early-
commit: 14 LUTs, for per-unit ID-buffers: 111 LUTs, for

commit-buffer: 93 LUTs and for ID-banked register file: 50

LUTs. For any non-trivial accelerator, most of these overheads

are likely to be small with the exception of the per-unit ID-
buffers and commit-buffer buffer designs.

B. Scaling Support for Additional IDs

In the previous section, we found that with a limit of 4-IDs,

ID related stalls were less than a tenth of a percent of all issue

stalls. As such, there is currently no benefit in increasing the

number of IDs, however, this may not hold for all possible

accelerator designs.

If we were to simply look at the maximum occupancy

that all execution units can hold (excluding input FIFOs) we

would end up with nine possible in-flight instructions for the

processor configuration used in this paper. However, as the

processor is single-issue in-order-issue, the upper bound will

be much lower. Additionally, instructions such as branches do

not count towards the ID limit despite accounting for 15%

of the instructions, on average, in our benchmarks. In fact,

the limiting factor is much more likely to be the inherent

Instruction-Level-Parallelism (ILP) of the software itself, as

average parallelism in systems with register renaming and

large execution windows is still less than 4 in many cases [23].

For deeply pipelined units, that have high internal ILP, the

existing designs that use the register in-use tracking (ie. all

designs other than ID-banked register file) can bypass the ID

limit. In these designs, if only a single unit is active at a time

there is no limit to number of in-flight instructions as register

TABLE III
RESOURCE USAGE OF 8-IDS AND INCREASE OVER 4-IDS

LUTs FFs Freq (MHz)
early-commit 2093 (+8.6%) 859 (+5.9%) 116.6 (-4.1%)

per-unit ID-buffers 2246 (+2.8%) 771 (+1.1%) 98.4 (+1.2%)
commit-buffer 3684 (+80.0%) 1923 (+121.3%) 107.7 (-10%)

ID-banked register file 4003 (+93.3%) 1690 (+115.2%) 88.8 (-16.4%)

dependencies are tracked on a per-register basis instead of on a

per-ID basis as they are for the ID-banked register file design.
Table III presents the resource usage for 8-IDs for all

designs along with the increase relative to their baseline of

4-IDs. For all designs other than early-commit, we find that

the ALU is still the critical path. For early-commit, the critical

path is now entirely within control logic ending in the update

logic for its ID ordering stack. Additionally, while early-
commit scales reasonably well up to 8 IDs, it also has the most

stalls due to resource contention which may limit its ability to

leverage additional IDs in systems with more execution units.
The best scaling design is the per-unit ID-buffers design,

which sees a LUT increase of only 2.8%. For this design, the

increases are purely within the ID-tracking infrastructure. As

was discussed in the design section, the per-unit ID-buffers’
LUTRAM-based storage allows it to scale up to 32 entries/IDs

before requiring additional LUTs for result storage. We find

that the commit-buffer and ID-banked register file designs have

the worst scaling as their storage requirements are proportional

to the number of IDs. To summarize, if your design truly needs

a large number of in-flight instructions, and those instructions

are distributed across multiple execution units, then the per-
unit ID-buffers design provides the best scalability.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have found that exception-safe writeback

mechanisms, specifically a commit-buffer based design, can

provide a 6% increase in IPC over a baseline non-exception-

safe Taiga early-commit design. This performance increases

further to 11% when compared to the exception-safe vari-

ant. When evaluating based on performance/LUT, the same

commit-buffer design achieves the same efficiency as early-
commit while providing higher throughput. All designs were

found to scale well in terms of frequency for up to eight

additional execution units. When increasing the support for

the maximum number of instructions in-flight, the per-unit ID-
buffers design was found to have exceptional scaling compared

to the ID-banked register file and commit-buffer buffer designs

which scale poorly with additional IDs. Future work can

consider addressing the bottlenecks found in our stall analysis

by exploring changes to support speculative execution or

support for multi-issue.

ACKNOWLEDGMENTS

This work is funded by the Natural Sciences and En-

gineering Research Council of Canada (NSERC) COHESA

project (NETGP485577-15), the CWSE PDF (470957), and

RGPIN341516, along with in-kind support from Xilinx and

Intel.

127

REFERENCES

[1] A. Waterman, “Design of the risc-v instruction set architecture,” Ph.D.
dissertation, EECS Depart., University of California, Berkeley, Jan 2016.

[2] “ORCA: RISC-V by VectorBlox,” VectorBlox. [Online]. Available:
github.com/VectorBlox/orca

[3] E. Matthews and L. Shannon, “Taiga: A new risc-v soft-processor
framework enabling high performance cpu architectural features,” in
FPL, Sept 2017, pp. 1–4.

[4] C. Papon, “Vexriscv.” [Online]. Available:
https://github.com/SpinalHDL/VexRiscv

[5] C. Wolf, “Picorv32 - a size-optimized risc-v cpu.” [Online]. Available:
https://github.com/cliffordwolf/picorv32

[6] H. Wong, V. Betz, and J. Rose, “Comparing fpga vs. custom cmos and
the impact on processor microarchitecture,” in FPGA, 2011, pp. 5–14.

[7] E. Matthews, Z. Aguila, and L. Shannon, “Evaluating the performance
efficiency of a soft-processor, variable-length, parallel-execution-unit
architecture for fpgas using the risc-v isa,” in 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), April 2018, pp. 1–8.

[8] P. Yiannacouras, J. Rose, and J. G. Steffan, “The microarchitecture of
fpga-based soft processors,” in Proceedings of the 2005 International
Conference on Compilers, Architectures and Synthesis for Embedded
Systems, ser. CASES ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 202–212. [Online]. Available:
https://doi.org/10.1145/1086297.1086325

[9] C. Hui Yan, S. Fahmy, and N. Kapre, “On data forwarding
in deeply pipelined soft processors,” in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 181–189. [Online]. Available:
https://doi.org/10.1145/2684746.2689067

[10] D. Wu and A. Moshovos, “Advanced branch predictors for soft proces-
sors,” in 2014 International Conference on ReConFigurable Computing
and FPGAs (ReConFig14), Dec 2014, pp. 1–6.

[11] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, “A multithreaded
soft processor for sopc area reduction,” in FCCM, April 2006, pp. 131–
142.

[12] R. Moussali, N. Ghanem, and M. A. R. Saghir, “Supporting multithread-
ing in configurable soft processor cores,” in CASES ’07. ACM, 2007,
pp. 155–159.

[13] K. Aasaraai and A. Moshovos, “Sprex: A soft processor with runahead
execution,” in ReConFig, Dec 2012, pp. 1–7.

[14] G. Schelle, J. Collins, E. Schuchman, P. Wang, X. Zou, G. Chinya,
R. Plate, T. Mattner, F. Olbrich, P. Hammarlund, and et al., “Intel
nehalem processor core made fpga synthesizable,” in Proceedings
of the 18th Annual ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 3–12. [Online].
Available: https://doi.org/10.1145/1723112.1723116

[15] F. J. Mesa-Martinez, A. Sharma, A. W. Hill, C. A. Cabrera, C. Bazeghi,
H. Kolakaleti, J. Nayfach, K. Singh, K. S. Halle, M. D. Fischler,
M. Nunez, S. Nair, S. N. Kurapati, W. A. Asmawi, and J. Renau, “Scoore
santa cruz out-of-order risc engine, fpga design issues,” in (WARP), held
in conjunction with ISCA-33, 2006, pp. 61–70.

[16] M. Rosière, J. l. Desbarbieux, N. Drach, and F. Wajsbürt, “An out-
of-order superscalar processor on fpga: The reorder buffer design,” in
DATE, March 2012, pp. 1549–1554.

[17] H. Wong, V. Betz, and J. Rose, “High performance instruction schedul-
ing circuits for out-of-order soft processors,” in FCCM, May 2016, pp.
9–16.

[18] ——, “Microarchitecture and circuits for a 200 mhz out-of-order soft
processor memory system,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 10, no. 1, pp. 7:1–7:22, Dec. 2016.

[19] E. Matthews and L. Shannon, “Taiga,” https://gitlab.com/sfu-rcl/Taiga,
2019.

[20] E. Matthews, A. Lu, Z. Fang, and L. Shannon, “Rethinking integer di-
vider design for fpga-based soft-processors,” in 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), April 2019, pp. 289–297.

[21] EmbenchTM Task Group, “EmbenchTM: Open benchmarks for embedded
platforms,” https://github.com/embench/embench-iot, 2019.

[22] W. Snyder, “Verilator 4.008,” 2018. [Online]. Available:
https://www.veripool.org/ftp/verilator doc.pdf

[23] D. W. Wall, “Limits of instruction-level parallelism,” in Proceedings
of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS IV.
New York, NY, USA: ACM, 1991, pp. 176–188. [Online]. Available:
http://doi.acm.org/10.1145/106972.106991

128

