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Abstract—FPGAs are starting to be enhanced with High
Bandwidth Memory (HBM) as a way to reduce the memory
bandwidth bottleneck encountered in some applications and to
give the FPGA more capacity to deal with application state.
However, the performance characteristics of HBM are still not
well specified, especially in the context of FPGAs. In this paper,
we bridge the gap between nominal specifications and actual
performance by benchmarking HBM on a state-of-the-art FPGA,
i.e., a Xilinx Alveo U280 featuring a two-stack HBM subsystem.
To this end, we propose Shuhai, a benchmarking tool that allows
us to demystify all the underlying details of HBM on an FPGA.
FPGA-based benchmarking should also provide a more accurate
picture of HBM than doing so on CPUs/GPUs, since CPUs/GPUs
are noisier systems due to their complex control logic and cache
hierarchy. Since the memory itself is complex, leveraging custom
hardware logic to benchmark inside an FPGA provides more
details as well as accurate and deterministic measurements. We
observe that 1) HBM is able to provide up to 425 GB/s memory
bandwidth, and 2) how HBM is used has a significant impact
on performance, which in turn demonstrates the importance of
unveiling the performance characteristics of HBM so as to select
the best approach. Shuhai can be easily generalized to other
FPGA boards or other generations of memory, e.g., HBM3,
and DDR3. We will make Shuhai open-source, benefiting the
community.

I. INTRODUCTION

The computational capacity of modern computing sys-

tem continues increasing due to the constant improvements

on CMOS technology, typically by instantiating more cores

within the same area and/or by adding extra functionality

to the cores (AVX, SGX, etc.). In contrast, the bandwidth

capability of DRAM memory has only slowly improved over

many generations. As a result, the gap between memory and

processor speed keeps growing and is being exacerbated by

multicore designs due to the concurrent access. To bridge the

memory bandwidth gap, semiconductor memory companies

such as Samsung1 have released a few memory variants, e.g.,

Hybrid Memory Cube (HMC) and High Bandwidth Memory

(HBM), as a way to provide significantly higher memory

ba ndwidth. For example, the state-of-the-art Nvidia GPU

V100 features 32 GB HBM2 (the second generation HBM) to

provide up to 900 GB/s memory bandwidth for its thousands

of computing cores.2

1https://www.samsung.com/semiconductor/dram/hbm2/
2https://www.nvidia.com/en-us/data-center/v100/

Compared with a GPU of the same generation, FPGAs used

to have an order of magnitude lower memory bandwidth since

FPGAs typically feature up to 2 DRAM memory channels,

each of which has up to 19.2 GB/s memory bandwidth on

our tested FPGA board Alevo U280 [1].3 As a result, an

FPGA-based solution using DRAM could not compete with a

GPU for bandwidth-critical applications. Consequently, FPGA

vendors like Xilinx [1] have started to introduce HBM4 in their

FPGA boards as a way to remain competitive on those same

applications. HBM has the potential to be a game-changing

feature by allowing FPGAs to provide significantly higher

performance for memory- and compute-bound applications

like database engines [2] or deep learning inference [3]. It

can also support applications in keeping more state within

the FPGA without the significant performance penalties seen

today as soon as DRAM is involved.

Despite the potential of HBM to bridge the bandwidth gap,

there are still obstacles to leveraging HBM on the FPGA. First,

the performance characteristics of HBM are often unknown to

developers, especially to FPGA programmers. Even though

an HBM stack consists of a few traditional DRAM dies

and a logic die, the performance characteristics of HBM

are significantly different than those of, e.g., DDR4. Second,

Xilinx’s HBM subsystem [4] introduces new features like a

switch inside its HBM memory controller. The performance

characteristics of the switch are also unclear to the FPGA

programmer due to the limited details exposed by Xilinx.

These two issues can hamper the ability of FPGA developers

to fully exploit the advantages of HBM on FPGAs.

To this end, we present Shuhai,5 a benchmarking tool that

allows us to demystify all the underlying details of HBM.

Shuhai adopts a software/hardware co-design approach to

provide high-level insights and ease of use to developers

or researchers interested in leveraging HBM. The high-level

insights come from the first end-to-end analysis of the per-

formance characteristic of typical memory access patterns.
The ease of use arises from the fact that Shuhai performs

the majority of the benchmarking task without having to

3https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
4In the following, we use HBM which refers to HBM2 in the context of

Xilinx FPGAs, as Xilinx FPGAs feature two HBM2 stacks.
5Shuhai is a pioneer of Chinese measurement standards, with which he

measured the territory of China in the Xia dynasty.
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reconfigure the FPGA between parts of the benchmark. To

our knowledge, Shuhai is the first platform to systematically

benchmark HBM on an FPGA. We demonstrate the usefulness

of Shuhai by identifying four important aspects on the usage

of HBM-enhanced FPGAs:

• HBMs Provide Massive Memory Bandwidth.On the

tested FPGA board Alveo U280, HBM provides up to 425

GB/s memory bandwidth, an order of magnitude more

than using two traditional DDR4 channels on the same

board. This is still half of what state-of-the-art GPUs

obtain but it represents a significant leap forward for

FPGAs.

• The Address Mapping Policy is Critical to High Band-

width. Different address mapping policies lead to an

order of magnitude throughput differences when running

a typical memory access pattern (i.e., sequential traversal)

on HBM, indicating the importance of matching the

address mapping policy to a particular application.

• Latency of HBM is Much Higher than DDR4. The

connection between HBM chips and the associated FPGA

is done via serial I/O connection, introducing extra pro-

cessing for parallel-to-serial-to-parallel conversion. For

example, Shuhai identifies that the latency of HBM is

106.7 ns while the latency of DDR4 is 73.3 ns, when the

memory transaction hits an open page (or row), indicating

that we need more on-the-fly memory transactions, which

are allowed on modern FPGAs/GPUs, to saturate HBM.

• FPGA Enables Accurate Benchmarking Numbers. We

have implemented Shuhai on an FPGA with the bench-

marking engine directly attaching to HBM modules,

making it easier to reason about the performance numbers

from HBM. In contrast, benchmarking memory perfor-

mance on CPUs/GPUs makes it difficult to distinguish

effects as, e.g., the cache introduces significant interfer-

ence in the measurements. Therefore, we argue that our

FPGA-based benchmarking approach is a better option

when benchmarking memory, whether HBM or DDR.

II. BACKGROUND

An HBM chip employs the latest development of IC packag-

ing technologies, such as Through Silicon Via (TSV), stacked-

DRAM, and 2.5D package [5], [6], [7], [8]. The basic structure

of HBM consists of a base logic die at the bottom and

4 or 8 core DRAM dies stacked on top. All the dies are

interconnected by TSVs.

Xilinx integrates two HBM stacks and an HBM controller

inside the FPGA. Each HBM stack is divided into eight

independent memory channels, where each memory channel

is further divided into two 64-bit pseudo channels. A pseudo

channel is only allowed to access its associated HBM channel
that has its own address region of memory, as shown in Fig-

ure 1. The Xilinx HBM subsystem has 16 memory channels,

32 pseudo channels, and 32 HBM channels.

On the top of 16 memory channels, there are 32 AXI
channels that interact with the user logic. Each AXI channel
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Fig. 1. Architecture of Xilinx HBM subsystem

adheres to the standard AXI3 protocol [4] to provide a

proven standardized interface to the FPGA programmer. Each

AXI channel is associated with a HBM channel (or pseudo

channel), so each AXI channel is only allowed to access

its own memory region. To make each AXI channel able

to access the full HBM space, Xilinx introduces a switch

between 32 AXI channels and 32 pseudo channels [9], [4].6

However, the switch is not fully implemented due to its huge

resource consumption. Instead, Xilinx presents eight mini-
switches, where each mini-switch serves four AXI channels

and their associated pseudo channels and the mini-switch is

fully implemented in a sense that each AXI channel accesses

any pseudo channel in the same mini-switch with the same

latency and throughput. Besides, there are two bidirectional

connections between two adjacent mini-switches for global

addressing.

III. GENERAL BENCHMARKING FRAMEWORK SHUHAI

A. Design Methodology

We summarize two concrete challenges C1 and C2, and
then present Shuhai to tackle the two challenges.

First, high-level insight (C1). It is critical to make our

benchmarking framework meaningful to FPGA programmers

in a sense that we should provide high-level insights to FPGA

programmers for ease of understanding. In particular, we

should give the programmer an end-to-end explanation, rather

than just incomprehensible memory timing parameters like

row precharge time TRP , so that the insights can be used to

improve the use of HBM memory on FPGAs.

Second, easy to use (C2). It is difficult to achieve ease of

use when benchmarking on FPGAs when a small modification

might need to reconfigure the FPGA. Therefore, we intend to

minimize the reconfiguration effort so that the FPGA does not

need to be reconfigured between benchmarking tasks. In other

words, our benchmarking framework should allow us to use a

single FPGA image for a large number of benchmarking tasks,

not just for one benchmarking task.

1) Our Approach: We propose Shuhai to tackle the above

two challenges. In order to tackle the first challenge C1,
Shuhai allows to directly analyze the performance charac-

teristics of typical memory access patterns used by FPGA

programmers, providing an end-to-end explanation for the

6By default, we disable the switch in the HBM memory controller when
we measure latency numbers of HBM, since the switch that enables global
addressing among HBM channels is not necessary. The switch is on when we
measure throughput numbers.
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overall performance. To tackle the second challenge C2,
Shuhai uses runtime parameterization of the benchmarking

circuit so as to cover a wide range of benchmarking tasks

without reconfiguring the FPGA. Through the access patterns

implemented in the benchmark, we are able to unveil the

underlying characteristics of HBM and DDR4 on FPGAs.

Shuhai adopts a software-hardware co-design approach

based on two components: a software component (Subsec-

tion III-B) and a hardware component (Subsection III-C). The

main role of the software component is to provide flexibility

to the FPGA programmer in terms of runtime parameters.

With these runtime parameters, we do not need to frequently

reconfigure the FPGA when benchmarking HBM and DDR4.

The main role of the hardware component is to guarantee

performance. More precisely, Shuhai should be able to expose

the performance potential, in terms of maximum achievable

memory bandwidth and minimum achievable latency, of HBM

memory on the FPGA. To do so, the benchmarking circuit

itself cannot be the bottleneck at any time.

B. Software Component

Shuhai’s software component aims to provide a user-

friendly interface such that an FPGA developer can easily use

Shuhai to benchmark HBM memory and obtain relevant per-

formance characteristics. To this end, we introduce a memory

access pattern widely used in FPGA programming: Repetitive
Sequential Traversal (RST), as shown in Figure 2.

The RST pattern traverses a memory region, a data array

storing data elements in a sequence. The RST repetitively

sweeps over the memory region of size W with the starting

address A, and each time reads B bytes with a stride of S
bytes, where B and S are a power of 2. On our tested FPGA,

the burst size B should be not smaller than 32 (or 64) for

HBM (or DDR4) due to the constraint of HBM/DDR4 memory

application data width. The stride S should be not larger than

the working set size W . The parameters are summarized in

Table I. We calculate the address T [i] of the i-th memory

read/write transaction issued by the RST, as illustrated in

Equation 1. The calculation can be implemented with simple

arithmetic, which in turn leads to fewer FPGA resources

and potentially higher frequency. Even though the supported

memory access pattern is quite simple, it can still unveil the

performance characteristics of the memory, e.g., HBM and

DDR4, on FPGAs.

T [i] = A + (i× S)%W (1)

C. Hardware Component

The hardware component of Shuhai consists of a PCIe
module, M latency modules, a parameter module and M
engine modules, as illustrated in Figure 3. In the following,

we discuss the implementation details for each module.

1 1 2 1 3 1 ... W/B
B

W

1 ...
A

S

Fig. 2. Memory access pattern used in Shuhai.

TABLE I
SUMMARY OF RUNTIME PARAMETERS

Parameter Definition
N Number of memory read/write transactions

B Burst size (in bytes) of a memory read/write transaction

W Working set size (in bytes). W (>16) is a power of 2.

S Stride (in bytes)

A Initial address (in bytes)

1) Engine Module: We directly attach an instantiated en-

gine module to an AXI channel such that the engine module

directly serves the AXI interface, e.g., AXI3 and AXI4 [10],

[11], provided by the underlying memory IP core, e.g., HBM

and DDR4. The AXI interface consists of five different chan-

nels: read address (RA), read data (RD), write address (WA),

write data (WD) and write response (WR) [10]. Besides, the

input clock of the engine module is exactly the clock from the

associated AXI channel. For example, the engine module is

clocked with 450 MHz when benchmarking HBM as it allows

at most 450 MHz for its AXI channels. There are two benefits

to use the same clock. First, no extra noise, such as longer

latency, is introduced by FIFOs needed to cross different clock

regions. Second, the engine module is able to saturate its

associated AXI channel, not leading to underestimates of the

memory bandwidth capacity.

The engine module, written in Verilog, consists of two

independent modules: a write module and a read module. The
write module serves three write-related channels WA, WD, and

WR, while the read module serves two read-related channels

RA and RD.

The write module contains a state machine to serve a

memory-writing task at a time from the CPU. The task has the

initial address A, number of write transactions N , burst size

B, stride S, and working set size W . Once the writing task

is received, this module always tries to saturate the memory

write channels WR and WD by asserting the associated valid

signals before the writing task completes, aiming to maximize

the achievable throughput. The address of each memory write

transaction is specified in Equation 1. This module also probes

the WR channel to validate that the on-the-fly memory write

transactions are successfully finished.

The read module contains a state machine to serve a

memory-reading task at a time from the CPU. The task has the

initial address A, number of read transactions N , burst size B,
stride S, and working set size W . Unlike the write module,

that only measures the achievable throughput, the read module

measures as well the latency of each of serial memory read

transactions: we immediately issue the second memory read

transaction only after the read data of the first read transaction

is returned.7 When measuring throughput, this module always

7We are able to unveil many performance characteristics of HBM and
DDR4 by analyzing the latency difference among serial memory read trans-
actions. The fundamental reason of the immediate issue is that a refresh
command that occurs periodically will close all the banks in our HBM/DDR4
memory, and then there will be no latency difference if the time interval of
two serial read transactions is larger than the time (e.g., 7.8 μs) between two
refresh commands.
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HBM:450MHz 
PCIe:250MHz 

Fig. 3. Overall hardware architecture of our benchmarking framework. It can
support M hardware engines running simultaneously, with each engine for
one AXI channel. In our experiment, M is 32 for HBM, while M is 2 for
DDR4.

tries to saturate the memory read channels RA and RD by

always asserting the RA valid signal before the reading task

completes.

2) PCIe Module: We directly deploy the Xilinx

DMA/Bridge Subsystem for PCI Express (PCIe) IP core

in our PCIe module, which is clocked at 250 MHz. Our

PCIe kernel driver exposes a PCIe bar mapping the runtime

parameters on the FPGA to the user such that the user is

able to directly interact with the FPGA using software code.

These runtime parameters determine the control and status

registers stored in the parameter module.

3) Parameter Module: The parameter module maintains the
runtime parameters and communicates with the host CPU via

the PCIe module, receiving the runtime parameters, e.g., S,
from the CPU and returning the throughput numbers to the

CPU.

Upon receiving runtime parameters, we use them to con-

figure M engine modules, each of which needs two 256-bit

control registers to store its runtime parameters: one register

for the read module and the other register for the write module

in each engine module. Inside a 256-bit register, W takes 32

bits, S takes 32 bits, N takes 64 bits, B takes 32 bits, and

A takes 64 bits. The remaining 32 bits are reserved for future

use. After setting all the engines, the user can trigger the start

signal to begin the throughput/latency testing.

The parameter module is also responsible for returning the

throughput numbers (64-bit status registers) to the CPU. One

status register is dedicated to each engine module.

4) Latency Module: We instantiate a latency module for

each engine module dedicated to an AXI channel. The latency

module stores a latency list of size 1024, where the latency

list is written by the associated engine module and read by the

CPU. Its size is a synthesis parameter. Each latency number

containing an 8-bit register refers to the latency for a memory

read operation, from the issue of the read operation to the data

having arrived from the memory controller.

‘

TABLE II
ADDRESS MAPPING POLICIES FOR HBM AND DDR4. THE DEFAULT

POLICIES OF HBM AND DDR4 ARE MARKED BLUE.

Policies HBM (app addr[27:5]) DDR4 (app addr[33:6])
RBC 14R-2BG-2B-5C 17R-2BG-2B-7C

RCB 14R-5C-2BG-2B 17R-7C-2B-2BG

BRC 2BG-2B-14R-5C 2BG-2B-17R-7C

RGBCG 14R-1BG-2B-5C-1BG

BRGCG 2B-14R-1BG-5C-1BG

RCBI 17R-6C-2B-1C-2BG

TABLE III
RESOURCE CONSUMPTION BREAKDOWN OF THE HARDWARE DESIGN FOR

BENCHMARKING HBM

Hardware modules LUTs Registers BRAMs Freq.
Engine 25824 34048 0 450MHz

PCIe 70181 66689 4.36Mb 250MHz

Parameter 1607 2429 0 250MHz

Latency 672 1760 1.17Mb 250MHz

Total resources used 104K 122K 5.53Mb

Total utilization 8% 5% 8%

IV. EXPERIMENT SETUP

A. Hardware Platform

We run our experiments on a Xilinx’s Alevo U280 [1]

featuring two HBM stacks of a total size of 8GB and two

DDR4 memory channels of a total size of 32 GB. The

theoretical HBM memory bandwidth can reach 450 GB/s (450

MHz * 32 * 32 B/s), while the theoretical DDR4 memory

bandwidth can reach 38.4 GB/s (300 MHz * 2 * 64 B/s).

B. Address Mapping Policies

The application address can be mapped to memory address

using multiple policies, where different address bits map to

bank, row, or column addresses. Choosing the right mapping

policy is critical to maximize the overall memory throughput.

The policies enabled for HBM and DDR4 are summarized in

Table II, where “xR” means that x bits are for row address,

“xBG” means that x bits are for bank group address, “xB”

means that x bits are for bank address, and “xC” means

that x bits are for column address. The default policies of

HBM and DDR4 are “RGBCG” and “RCB”, respectively. “-”

stands for address concatenation. We always use the default

memory address mapping policy for both HBM and DDR4 if

not particularly specified. For example, the default policy for

HBM is RGBCG.

C. Resource Consumption Breakdown

In this subsection, we breakdown the resource consumption

of the hardware design of Shuhai when benchmarking HBM.8

Table III shows the exact FPGA resource consumption of

each instantiated module. We observe that Shuhai requires a

reasonably small amount of resources to instantiate 32 engine

modules, as well as additional components such as the PCIe

module, with the total resource utilization being less than 8%.

8Due to space constraints, we omit the resource consumption for bench-
marking DDR4 memory on the FPGA.
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D. Benchmarking Methodology

We aim to unveil the underlying details of HBM stacks on

Xilinx FPGAs under Shuhai. As a yardstick, we also analyze

the performance characteristics of DDR4 on the same FPGA

board U280 [1] when necessary. When we benchmark a HBM

channel, we compare the performance characteristics of HBM

with that of DDR4 (in Section V). We believe that the numbers

obtained for a HBM channel can be generalized to other

computing devices such as CPUs or GPUs featuring HBMs.

When benchmarking the switch inside the HBM memory

controller, we do not do the comparison with DDR, since

the DDR4 memory controller does not contain such a switch

(Section VI).

V. BENCHMARKING AN HBM CHANNEL

A. Effect of Refresh Interval

When a memory channel is operating, memory cells should

be refreshed repetitively such that the information in each

memory cell is not lost. During a refresh cycle, normal

memory read and write transactions are not allowed to access

the memory. We observe that a memory transaction that

experiences a memory refresh cycle exhibits a significantly

longer latency than a normal memory read/write transaction

that is allowed to directly access the memory chips. Thus, we

are able to roughly determine the refresh interval by leveraging

memory latency differences between normal and in-a-refresh

memory transactions. In particular, we leverage Shuhai to

measure the latency of serial memory read operations. Figure 4

illustrates the case with B = 32, S = 64,W = 0x1000000, and

N = 1024. We have two observations. First, for both HBM and

DDR4, a memory read transaction that coincides with an active

refresh command has significantly longer latency, indicating

the need to issue enough on-the-fly memory transactions to

amortize the negative effect of refresh commands. Second,

for both HBM and DDR4, refresh commands are scheduled

periodically, the interval between any two consecutive refresh

commands being roughly the same.

B. Memory Access Latency

We leverage Shuhai to accurately measure the latency

of consecutive memory read transactions when the memory

controller is in an “idle” state, i.e., where no other pending

memory transactions exist in the memory controller such that

the memory controller is able to return the requested data to

the read transaction with minimum latency. We aim to identify

latency cycles of three categories: page hit, page closed, and
page miss.9

The “page hit” state occurs when a memory transaction

accesses a row that is open in its bank, so no Precharge and

Activate commands are required before the column access,

resulting in minimum latency.

9The latency numbers are identified when the switch is disabled. The
latency numbers will be seven cycles higher when the switch is enabled,
as the AXI channel accesses its associated HBM channel through the switch.
The switching of bank groups does not affect memory access latency, since
at most one memory read transaction is active at any time in this experiment.

(a) HBM

(b) DDR4

Fig. 4. Higher access latency of memory refresh commands that occur
periodically on HBM and DDR4.

The “page closed” state occurs when a memory transaction

accesses a row whose corresponding bank is closed, so the

row Activate command is required before the column access.

The “page miss” state occurs when a memory transaction

accesses a row that does not match the active row in the

bank, so one Precharge command and one Activate command

are issued before the column access, resulting in maximum

latency.

We employ the read module to accurately measure the

latency numbers for the cases B = 32, W = 0x1000000, N
= 1024, and varying S. Intuitively, the small S leads to high

probability to hit the same page while a large S potentially

leads to a page miss. Besides, a refresh command closes all

the active banks. In this experiment, we use two values of S:
128 and 128K.

We use the case S=128 to determine the latency of page hit
and page closed transactions. S=128 is smaller than the page

size, so the majority of read transactions will hit an open page,

as illustrated in Figure 5. The remaining points illustrate the

latency of page closed transactions, since the small S leads to a

large amount of read transactions in a certain memory region

and then a refresh will close the bank before the access to

another page in the same bank.10

We use the case S=128K to determine the latency of a

page miss transaction. S=128K leads to a page miss for each

memory transaction for both HBM and DDR4, since two

consecutive memory transaction will access the same bank

but different pages.

We summarize the latency on HBM and DDR in Table IV.

We observe that the memory access latency on HBM is higher

than that on DDR4 by about 30 nano seconds under the

same category like page hit. It means that HBM could have

10The latency trend of HBM is different of that of DDR4 due to the different
default address mapping policy. The default address mapping policy of HBM
is RGBCG, indicating that only one bank needs to be active at a time, while
the default policy of DDR4 is RCB, indicating that four banks are active at
a time.
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Fig. 5. Snapshots of page miss, page closed and page hit, in terms of latency
cycles, on HBM and DDR4.

TABLE IV
IDLE MEMORY ACCESS LATENCY ON HBM AND DDR4. INTUITIVELY,

THE HBM LATENCY IS MUCH HIGHER THAN DDR4.

Idle Latency HBM DDR4
Cycles Time Cycles Time

Page hit 48 106.7 ns 22 73.3 ns

Page closed 55 122.2 ns 27 89.9 ns

Page miss 62 137.8 ns 32 106.6 ns

disadvantages when running latency-sensitive applications on

FPGAs.

C. Effect of Address Mapping Policy

In this subsection, we examine the effect of different mem-

ory address mapping policies on the achievable throughput. In

particular, under different mapping policies, we measure the

memory throughput with varying stride S and burst size B,
while keeping the working set size W (= 0x10000000) large

enough. Figure 6 illustrates the throughput trend for different

address mapping policies for both HBM and DDR4. We have

five observations.

First, different address mapping policies lead to significant

performance difference. For example, Figure 6a illustrates

that the default policy (RGBCG) of HBM is almost 10X

faster than the policy (BRC) when S is 1024 and B is 32,

demonstrating the importance of choosing the right address

mapping policy for a memory-bound application running on

the FPGA. Second, the throughput trends of HBM and DDR4

are quite different even though they employ the same address

mapping policy, demonstrating the importance of a benchmark

platform such as Shuhai to evaluate different FPGA boards

or different memory generations. Third, the default policy

always leads to the best performance for any combination of

S and B on HBM and DDR4, demonstrating that the default

setting is reasonable. Fourth, small burst sizes lead to low

memory throughput, as shown in Figures 6a, 6e, meaning

that FPGA programmers should increase spatial locality to

achieve higher memory throughput out of HBM or DDR4.

Fifth, large S (>8K) always leads to an extremely low memory

bandwidth utilization, indicating the extreme importance of

keeping spatial locality. In other words, the random memory

access that does not keep spatial locality will experience low

memory throughput. We conclude that choosing the right

address mapping policy is critical to optimize memory per-

formance on FPGAs.

D. Effect of Bank Group

In this subsection, we examine the effect of bank group,

which is a new feature of DDR4, compared to DDR3. Ac-

cessing multiple bank groups simultaneously helps us relieve

the negative effect of DRAM timing restrictions that have

not improved over generations of DRAM. A higher memory

throughput can be potentially obtained by accessing multiple

bank groups. Therefore, we use the engine module to validate

the effect of a bank group (Figure 6). We have two observa-

tions.

First, with the default address mapping policy, HBM allows

to use large stride size while still keeping high throughput, as

shown in Figures 6a, 6b, 6c, 6d. The underlying reason is that

even though each row buffer is not fully utilized due to large

S, bank-group-level parallelism is able to allow us to saturate

the available memory bandwidth. Second, a pure sequential

read does not always lead to the highest throughput under a

certain mapping policy. Figures 6b, 6c illustrate that when S
increases from 128 to 2048, a bigger S can achieve higher

memory throughput under the policy “RBC”, since a bigger S
allows more active bank groups to be accessed concurrently,

while a smaller S potentially leads to only one active bank

group that serves user’s memory requests. We conclude that it

is critical to leverage bank-group-level parallelism to achieve

high memory throughput under HBM.

E. Effect of Memory Access Locality

In this subsection, we examine the effect of memory access

locality on memory throughput. We vary the burst size B
and the stride S, and we set the working set size W to

two values: 256M and 8K. The case W=256M refers to

the baseline that does not benefit from any memory access

locality, while the case W=8K refers to the case that benefits

from locality. Figure 7 illustrates the throughput for varying

parameter settings on both HBM and DDR4. We have two

observations.

First, memory access locality indeed increases the memory

throughput for each case with high stride S. For example, the
memory bandwidth of the case (B=32, W=8K, and S=4K)
is 6.7 GB/s on HBM, while 2.4 GB/s of the case (B=32,
W=256M, and S=4K), indicating that memory access locality
is able to eliminate the negative effect of a large stride.

Second, memory access locality cannot increase the memory

throughput when S is small. In contrast, memory access

locality can significantly increase the total throughput on

modern CPUs/GPUs due to the on-chip caches which have

dramatically higher bandwidth than off-chip memory [12].
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(a) B=32 (HBM) (b) B=64 (HBM) (c) B=128 (HBM)

(d) B=256 (HBM) (e) B=64 (DDR4) (f) B=128 (DDR4)

(g) B=256 (DDR4) (h) B=512 (DDR4)

Fig. 6. Memory throughput comparison between an HBM channel and a DDR4 channel, with different burst sizes and stride under all the address mapping
policies. In this experiment, we use the AXI channel 0 to access its associated HBM channel 0 for the best performance from a single HBM channel. We
use the DDR4 channel 0 to obtain the DDR4 throughput numbers.

(a) HBM

(b) DDR4

Fig. 7. Effect of memory access locality.

F. Total Memory Throughput

In this subsection, we explore the total achievable memory

throughput of HBM and DDR4 (Table V). The HBM system

on the tested FPGA card, U280, is able to provide up to 425

GB/s (13.27 GB/s * 32) memory throughput when we use all

TABLE V
TOTAL MEMORY THROUGHPUT COMPARISON BETWEEN HBM AND DDR4.

HBM DDR4
Throughput of a channel 13.27 GB/s 18 GB/s

Number of channels 32 2

Total memory throughput 425 GB/s 36 GB/s

the 32 AXI channels to simultaneously access their associated

HBM channels.11 The DDR4 memory is able to provide up to

36 GB/s (18 GB/s * 2) memory throughput when we simulta-

neously access both DDR4 channels on our tested FPGA card.

We observe that the HBM system has 10 times more memory

throughput than DDR4 memory, indicating that the HBM-

enhanced FPGA enables us to accelerate memory-intensive

applications, which are typically accelerated on GPUs.

VI. BENCHMARKING THE SWITCH IN THE HBM

CONTROLLER

Our goal in this section is to unveil the performance

characteristics of the switch. In a fully implemented switch,

the performance characteristics of the access from any AXI

channel to any HBM channel should be roughly the same.

11Each AXI channel accesses its local HBM channel, there is no inference
among the 32 AXI channels. Since each AXI channel approximately has the
same throughput, we estimate the total throughput by simply scaling up the
throughput of the channel 0 by 32.
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TABLE VI
MEMORY ACCESS LATENCY FROM ANY OF 32 AXI CHANNELS TO THE

HBM CHANNEL 0. THE SWITCH IS ON. INTUITIVELY, LONGER DISTANCE

YIELDS LONGER LATENCY. THE LATENCY DIFFERENCE REACHES UP TO 22
CYCLES.

Channels Page hit Page closed Page miss
Cycles Time Cycles Time Cycles Time

0-3 55 122.2 ns 62 137.8 ns 69 153.3 ns

4-7 56 124.4 ns 63 140.0 ns 70 155.6 ns

8-11 58 128.9 ns 65 144.4 ns 72 160.0 ns

12-15 60 133.3 ns 67 148.9 ns 74 164.4 ns

16-19 71 157.8 ns 78 173.3 ns 85 188.9 ns

20-23 73 162.2 ns 80 177.7 ns 87 193.3 ns

24-27 75 166.7 ns 82 182.2 ns 89 197.8 ns

28-31 77 171.1 ns 84 186.7 ns 91 202.2 ns

However, in the current implementation, the relative distance

could play an important role. In the following, we examine

the performance characteristics between any AXI channel and

any HBM channel, in terms of latency and throughput.

1) Memory Latency: Due to space constraints, we only

demonstrate the memory access latency using the memory read

transaction issued in any AXI channel (from 0 to 31) to the

HBM channel 0.12 Access to other HBM channels has similar

performance characteristics. Similar to the experimental setup

in Subsection V-B, we also employ the engine module to

determine the accurate latency for the case B = 32, W =

0x1000000, N = 1024, and varying S. Table VI illustrates

the latency difference among 32 AXI channels. We have two

observations.

First, the latency difference can be up to 22 cycles. For

example, for a page hit transaction, an access from the AXI

channel 31 needs 77 cycles, while an access from the AXI

channel 0 only needs 55 cycles. Second, the access latency

from any AXI channel in the same mini-switch is identical,

demonstrating that the mini-switch is fully-implemented. For

example, the AXI channels 4-7 in the same mini-switch have

the same access latency to the HBM channel 0. We conclude

that an AXI channel should access its associated HBM channel

or the HBM channels close to it to minimize latency.

2) Memory Throughput: We employ the engine module to

measure memory throughput from any AXI channel (from 0

to 31) to HBM channel 0, with the setting B = 64, W =

0x1000000, N = 200000, and varying S. Figure 8 illustrates

the memory throughput from an AXI channel in each mini-

switch to the HBM channel 0. We observe that AXI channels

are able to achieve roughly the same memory throughput,

regardless of their locations.

VII. RELATED WORK

To our knowledge, Shuhai is the first platform to benchmark

HBM on FPGAs in a systematic and comprehensive manner.

We contrast closely related work with Shuhai on 1) bench-

marking traditional memory on FPGAs; 2) data processing

with HBM; and 3) accelerating application with FPGAs.

12The switch is enabled to allow global addressing, when comparing the
latency difference among AXI channels.

Fig. 8. Throughput from eight AXI channels to the HBM channel 1, where
each AXI channel is from a mini-switch.

First, benchmarking traditional memory on FPGAs. Previ-

ous work [13], [14], [15] tries to benchmark traditional mem-

ory, e.g., DDR3, on the FPGA by using high-level languages,

e.g., OpenCL. In contrast, we benchmark HBM on the state-

of-the-art FPGA.

Second, data processing with HBM/HMC. Previous

work [16], [17], [18], [19], [20], [21], [22], [23] employs HBM

to accelerate their applications, e.g., hash table deep learning

and streaming, by leveraging the high memory bandwidth

provided by Intel Knights Landing (KNL)’s HBM [24]. In

contrast, we benchmark the performance of HBM on the

Xilinx FPGA.

Third, accelerating applications with FPGAs. Previous

work [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],

[35], [36], [3], [37], [38], [39], [40], [41], [42], [43], [44], [2],

[45], [46], [47], [48], [49], [50] accelerates a broad range of

applications, e.g., database and deep learning inference, using

FPGAs. In contrast, we systematically benchmark HBM on

the state-of-the-art FPGA regardless of the application.

VIII. CONCLUSION

FPGAs are being enhanced with High Bandwidth Mem-

ory (HBM) to tackle the memory bandwidth bottleneck that

dominates memory-bound applications. However, the perfor-

mance characteristics of HBM are still not quantitatively and

systematically analyzed on FPGAs. We bridge the gap by

benchmarking HBM stack on a state-of-the-art FPGA featur-

ing a two-stack HBM2 subsystem. Accordingly, we propose

Shuhai to demystify the underlying details of HBM such that

the user is able to obtain a more accurate picture of the

behavior of HBM than what can be obtained by doing so on

CPUs/GPUs as they introduce noise from the caches. Shuhai

can be easily generalized to other FPGA boards or other

generations of memory modules. We will make the related

benchmarking code open-source such that new FPGA boards

can be explored and the results across boards are compared.

The code is available: https://github.com/RC4ML/Shuhai.
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