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Abstract—Overlay Networks-on-Chip (NoCs) for FPGAs based
on the Butterfly-Fat Tree (BFT) topology with lightweight flow
control deliver low LUT costs and features such as in-order
delivery and livelock freedom. BFT NoCs make it possible to
configure network bandwidth to match application requirements,
by choosing switch types with different numbers of ports (arity)
for the layers of the tree hierarchy. We increase the design space
of BFT NoC configurations available to designers by constructing
networks with larger arity-4 switches, in addition to the arity-
2 switches explored by previous works. When synthesized for
the Xilinx UltraScale+ VU9P FPGA, our proposed BFT NoCs
consume 38-45% fewer LUTs and 33-50% smaller wiring lengths
than arity-2 BFT NoCs with the same Rent parameter, in
exchange for a reduction in maximum clock frequency in up
to 25%. We simulate the operation of our proposed NoCs when
routing various real-world workloads with 64 network clients,
and show that they consistently achieve better Throughput / LUT
cost ratios, when compared to arity-2 BFT NoCs with the same
Rent parameter, with improvements of 15 to 120% depending
on the benchmark and NoC topology.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are being widely

adopted by industry: examples include Microsoft Catapult [1],

the Amazon EC2 F1 Instances [2], the Baidu FPGA Cloud

Server [3] and the Huawei FPGA Accelerated Cloud Server

[4]. FPGAs have also become more accessible to software

developers, due to High Level Synthesis tools such as Vivado

HLS [5] and Intel a++ [6].

This context of increased popularity and accessibility, as

well as the growing complexity of applications implemented

in FPGAs (in e.g. machine learning, networking), has led to

the rise of modular workflows and data movement paradigms,

where intellectual property (IP) cores are instantiated and

connected in the reconfigurable fabric to fulfill application

requirements. These trends, in turn, have created an important

role for overlay networks-on-chip (NoC), which transport

data between modules in a scalable way, and are assembled

from the same reconfigurable components as the rest of the

application deployed in a FPGA. An overlay NoC may be

used either as the main substrate for communications, or as a

complement to an hard (ASIC) NoC present in the chip [7],

providing tighter connectivity.

This paper builds upon previous works that explored the

Butterfly-Fat Tree (BFT) topology as an option for overlay

NoC [8], [9]. BFT are hierarchical structures for building

networks, where the clients (known as Processing Elements

- PE) are present at the bottom of the hierarchy, and messages

sent from a PE climb layers of switches until an appropriate

level, and then turn and descend to reach their destination.

An example packet trajectory is shown in Figure 1. These

previous works focused on BFT NoCs composed of switches

with two ports facing downhill in the tree hierarchy (arity-2

switches): Figure 1(a) shows one such NoC, with 64 clients

at the bottom.

This paper explores arity-4 switches as an alternative to

construct BFT NoC that require fewer resources (in terms of

LUTs, Flip-Flops and wiring) than their counterparts based on

arity-2 switches. Its contributions include:

• Register-transer level (RTL) implementation of four BFT

NoCs based on arity-4 switches, with different band-

widths as expressed by the Rent parameter [10]. One such

BFT NoC is depicted in Figure 1(b).

• Characterization of the performance of new BFT NoCs

when routing various realistic workloads.

• Comparison with BFT NoCs based on arity-2 switches

in terms of Throughput, Worst-Case Packet Latency and

resource costs.

• A repository containing our RTL implementations of the

BFT NoCs and associated code for simulation and syn-

thesis, available at https://git.uwaterloo.ca/watcag-public/

bft-flow-arity4.

II. BACKGROUND

First introduced in 1985 [11], Butterfly Fat Trees (BFT)

have been employed in the design of communication networks

for data centers [12] and multiprocessors [13], among other

applications.

FPGA NoCs with BFT topologies are explored in previous

works [8] [9]. BFT variations offering different amounts

of bandwidth are constructed by configuring each layer of

switches with either one uphill-facing port (t switches) or two

uphill-facing ports (pi switches).

This notion of bandwidth is expressed by the Rent parameter

p, which stems from a recursive model of the number of

connections that cross the network bisection as an exponential

function C×Np [10]. In this model, N is the number of leaf

nodes (network clients) and 0 ≤ p ≤ 1 is the Rent parameter.
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(a) Arity-2 (b) Arity-4

Fig. 1. Two BFT NoC with a Rent parameter of 0.5 (equivalent to a mesh), one based on arity-2 switches (a), the other based on arity-4 switches (b). The
red highlight shows the route taken by a packet from the network address 0x02 to the network address 0x19.

(a) t Switch (b) pi Switch

Fig. 2. Internal structure of the arity-2 t and pi switches.

A group of four BFT variants, which we refer to as BFT-A2,

was studied by the previous works [8] [9]:

• BFT0 (Arity = 2) composed only of layers of t switches.

It has a Rent parameter p = 0, the same as a tree network.

• BFT1 (Arity = 2) composed of alternating layers of t

and pi switches (pictured in Figure 1(a)). It has a Rent

parameter p = 0.5, the same as a regular mesh.

• BFT2 (Arity = 2) composed of a repeating pattern of two

layers of pi switches followed one layer of t switches. It

has a Rent parameter p = 0.67.

• BFT3 (Arity = 2) composed only of layers of pi switches.

It has a Rent parameter p = 1, the same as a crossbar.

Figure 2 shows the internal structure for the switches

proposed by the more recent work to study the BFT-A2 [9].

Inside the pi switch (Figure 2 (b)), incoming packets from

a specific downward-facing input are directed to a specific

upward-facing output: this ensures that a sequence of packets

sent from a PE to another is received in-order. The same work

also implemented a lightweight flow-control mechanism for

the switches: contention for the output of the multiplexers

(muxes) shown in Figure 2 is managed by round-robin arbiters.

Packets that lose the contention for an output are stored in

shadow-registers, and backpressure signals are propagated to

signal when shadow registers are occupied.

III. BFT NOC BASED ON ARITY-4 SWITCHES

As an overlay NoC is assembled from the same reconfig-

urable fabric as the rest of the application deployed on an

FPGA, it must also factor into the budget of reconfigurable

elements used to implement the complete application. In this

context, one reason to consider arity-4 switches is that they

may harness the wide muxes present in some modern devices,

such as the F7 muxes featured in Xilinx 7 Series FPGAs [14],

which make it possible to create 7-input functions by switching

between the outputs of two 6-LUTS.

Should these wide muxes contribute to limit the resource

costs of arity-4 switches when compared to arity-2 switches,

the overall resource cost of arity-4 BFT NoCs would be

smaller, as fewer arity-4 switches are required to construct

a NoC with a given Rent parameter.

Figure 3 shows the internal structure we define for the

three arity-4 switches: 4:1 (four downhill-facing duplex links,

one uphill-facing link), 4:2 and 4:4. Similarly to the strategy

adopted in the more recent work to study the BFT-A2 [9],

packets entering through a certain downward-facing input port

can only exit through a certain uphill-facing output port (to

guarantee in-order delivery), or through one of the downward-

facing output ports, in case of a turn.

The routing of packets in the arity-4 BFT NoC network

follows the same basic rules as in the arity-2 BFT NoC. The

major difference is that, instead of determining which of the

two downhill ports to send a descending packet through by

reading one address bit, the switches decide between four ports

by reading a pair of address bits. The lightweight flow-control

mechanism used for the arity-2 switches is also present in the

arity-4 switches.
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(a) 4:1 Switch (b) 4:2 Switch (c) 4:4 Switch

Fig. 3. Internal structure of the three arity-4 switches explored in this work.

We define a group BFT-A4 of four BFT NoC based on arity-

4 switches, with the same Rent parameter values as those in

the BFT-A2 group:

• BFT0 (Arity = 4) composed only of layers of 4:1

switches (Rent parameter p = 0).

• BFT1 (Arity = 4) composed only of layers of 4:2

switches, pictured in Figure 1(b) (p = 0.5).

• BFT2 (Arity = 4) composed of a repeating pattern of

one layer of 4:4 switches followed by two layers of 4:2

switches (p = 0.67).

• BFT3 (Arity = 4) composed only of layers 4:4 switches

(p = 1).

For a given number of PEs, each BFT NoC from the BFT-

A4 group requires fewer switches and muxes than its BFT-A2

equivalent. For instance, the arity-2 BFT1 depicted in Figure

1(a) requires 56 pi switches, each with two internal muxes as

seen in Figure 2, and 56 t switches, each with three internal

muxes, for a total of 112 switches and 280 muxes. The arity-4

BFT1 depicted in Figure 1(b), on the other hand, requires 28

4:2 switches, each with six internal muxes as seen in Figure

3, or 168 muxes overall.

IV. METHODOLOGY

In order to perform experiments with our proposed BFT

NoC, we first produce Verilog RTL implementations of the

arity-4 switches and BFT-A4 NoC, instantiating F7 mux [14]

components to implement the wide muxes found inside the

4:2 and 4:4 switches. A purely behavioural implementation is

also provided to support simulation, and synthesis for devices

that don’t support F7 muxes.

We then employ Verilator [15] to perform cycle-accurate

simulations of the BFT-A2 and BFT-A4 NoCs as they route

various benchmarks. Each simulation reports the number of

packets transported, the total number of clock cycles required

to complete the workload, and the worst-case latency suffered

by a workload packet between being sent and being received.

The benchmarks are adapted from two sources:

• Benchmarks in graph analytics adapted from [16]: wiki,

stanford, soc, roadnet, human, google, amazon.

• Benchmarks in sparse matrix-vector multiplication

(SpVM) adapted from [17]: ram2k, hamm, dac, bomhof

1, bomhof 2, bomhof 3, add20.

Graph analytics and SpVM are the application domains

chosen for the benchmarks due to their suitability for FPGA

TABLE I
SYNTHESIS RESULTS FOR THE BFT-A2 AND BFT-A4 NOCS (DATA

WIDTH OF 32 BITS, 64 PE).

BFT NoC LUTs FFs
Mux

F7

Freq.

(MHz)

Wire

Len.

BFT0 - Arity=2 ( [9]) 22K 21K 0 490 84
BFT1 - Arity=2 ( [9]) 39K 37K 0 489 192
BFT2 - Arity=2 ( [9]) 49K 47K 0 535 288
BFT3 - Arity=2 ( [9]) 66K 63K 0 523 448

BFT0 - Arity=4 (this work) 12K 14K 0 483 56
BFT1 - Arity=4 (this work) 22K 19K 5K 438 96
BFT2 - Arity=4 (this work) 31K 27K 6K 402 160
BFT3 - Arity=4 (this work) 36K 33K 8K 401 224

acceleration. Each workload consists of a list for each PE,

detailing the sequence of single-flit packets that the PE should

send, and the address of the PE each message should be

destined to. Each encompasses between 10K and 1M total

messages exchanged.

We also perform synthesis, placement and routing of the

NoCs with Vivado 2019.1 [18], targeting the Xilinx Ultra-

Scale+ VU9P FPGA. Table I shows the results in terms of

resource costs (LUTs, FFs, and F7 muxes) and maximum

achievable frequency. It also includes estimates of the relative

wiring length required by each design, supposing an H-tree

layout.

As expected, the BFT-A4 NoCs are less expensive in terms

of resources than their BFT-A2 equivalents: 38-45% smaller

LUT costs and 33-50% smaller wiring lengths, depending

on the topology. However, they also achieve lower maximum

frequencies (up to 25% lower frequencies), due to the higher

complexity of each switch (e.g. in terms of arbitration logic).

By combining the operating frequency provided by the

synthesis with the results of the cycle-accurate simulations,

we determine the Throughput and Worst-Case Packet Latency

(WCPL) achieved by each NoC when routing each benchmark.

V. EVALUATION

Figure 4 shows the LUT cost of each BFT NoC on the

horizontal axis, and the Throughput (packets / ns) and WCPL

(ns) achieved when routing the soc benchmark on the vertical

axis. These plots are representative of the results observed for

most benchmarks. For comparison, the data for a contempo-

rary NoC, the CONNECT [19], is also depicted.

We see that the BFT-A4 NoCs require fewer LUTs than their

BFT-A2 equivalents, but achieve higher WCPLs and lower
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Fig. 4. LUT cost plotted against Throughput (packets / ns) and Worst-Case
Packet Latency (ns) for the soc benchmark, system size of 64 PE.

Throughputs due to their lower clock frequencies. Thus, their

interest would tend to lie in use-cases where designers have a

constrained budget in terms of FPGA resources to implement

the NoC.

A designer may not be working with a specific maximum

budget of LUTs for the NoC, but rather may be interested in

maximizing the ratio of throughput to the number of LUTs

allocated for the network. The plot in Figure 5 shows the

ratios of Throughput to LUT cost achieved by each BFT NoC

for each benchmark, normalized to the ratio achieved by the

BFT0 (Arity=2) NoC for the benchmark. For all benchmarks,

the NoC from the BFT-A4 group always achieve higher ratios

than those achieved by their BFT-A2 counterparts. Ratios are

85 to 120% higher for BFT0, 39 to 91% higher for BFT1, 15

to 31% higher for BFT2 and 37 to 54% higher for BFT3.

Finally, external factors may constrain the NoC frequency

to be inferior to the maximum frequencies of BFT-A4 NoCs.

In this case, we may express performance metrics in terms of

clock cycles instead of ns, as the BFT-A2 and BFT-A4 NoCs

may all be operated at the same frequency. Figure 6 shows the

results of the same experiment depicted in Figure 4, but with

Throughput expressed in packets / cycle and WCPL expressed

in cycles. In this case, the BFT-A4 NoCs achieve Throughputs

and WCPLs equal or better than those achieved by equivalent

BFT-A2 NoCs, while requiring fewer LUTs.

VI. CONCLUSIONS

In this work, we added BFT NoC based on arity-4 switches

to the collection of FPGA BFT NoCs with lightweight flow

control. We also compared the performance of arity-2 and

arity-4 BFT NoCs in terms of the throughput to LUT cost

ratio, showing that the arity-4 BFT NoCs achieve higher ratios.

Because arity-4 BFT NoCs consume fewer LUTs and wiring

length than their arity-2 counterparts, they likely also outper-

form them in power consumption. A future work could verify

this hypothesis by augmenting our experimental infrastructure.

Higher switch arities(e.g. arity-8) could also be explored, to

verify if the trend of exchanging clock frequency for lower

resource costs continues.

RTL→ https://git.uwaterloo.ca/watcag-public/bft-flow-arity4

Fig. 5. Normalized ratio of Throughput (packets / ns) to LUT cost achieved
by each BFT NoC for the benchmarks.

(a) Key

0 20000 40000 60000 80000
LUTs

0

2

4

6

8

10

T
h
ro
u
gh

p
u
t
(p
ac
ke
ts
/c
y
cl
e)

(b) Throughput

0 20000 40000 60000 80000
LUTs

0

20000

40000

60000

80000

100000

120000

W
or
st

ca
se

la
te
n
cy

(C
y
cl
es
)

(c) Worst-Case Packet Latency

Fig. 6. LUT cost plotted against Throughput (packets / cycle) and Worst-Case
Packet Latency (cycles) for the soc benchmark, system size of 64 PE.
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