
Hardware Architecture of a Number Theoretic
Transform for a Bootstrappable RNS-based

Homomorphic Encryption Scheme

Sunwoong Kim∗, Keewoo Lee†, Wonhee Cho†, Yujin Nam‡§, Jung Hee Cheon†§, and Rob A. Rutenbar¶
∗Division of Engineering and Mathematics, University of Washington, Bothell, WA 98011, USA
†Department of Mathematical Sciences, Seoul National University, Seoul 08826, South Korea

‡Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
§CryptoLab, Seoul 08826, South Korea

¶Department of Computer Science and Department of Electrical and Computer Engineering,

University of Pittsburgh, Pittsburgh, PA 15260, USA

Email: sunwoong@uw.edu, {activecondor, wony0404, skyyujin96, jhcheon}@snu.ac.kr, rutenbar@pitt.edu

Abstract—Homomorphic encryption (HE) is one of the most
promising solutions to secure cloud computing. The number
theoretic transform (NTT) that is widely used for convolution
operations in HE requires a large amount of computation and
has high parallelism, and therefore it has been a good candidate
for hardware acceleration. Nevertheless, prior NTT hardware
solutions for HE-based applications are impractical in most
applications because they do not seriously consider the critical
bootstrapping procedure that allows unlimited homomorphic
operations on encrypted data.

In this paper, we suggest practical bootstrappable parameters,
specifically for an established residue number system (RNS)-
based HE scheme, and apply them to our NTT hardware design.
In addition, to limit the size of internal memory for roots of unity
increased by the bootstrappable parameters, only a few roots of
unity are stored and others are generated on the fly. In our
NTT hardware architecture, multiple NTT butterfly units (BUs)
are efficiently deployed for high throughput and high resource
utilization. In particular, several groups of BUs for respective
moduli work in a parallel and pipelined manner, which is effective
in an RNS-based HE scheme with a number of moduli.

Our implementation on a Xilinx UltraScale FPGA with the
bootstrappable parameters achieves a 118× faster processing
speed than a software implementation, and it further provides
various trade-off choices such as the number of DSP slices against
BRAMs based on available FPGA resources.

I. INTRODUCTION

Recently, machine learning has received much attention as

an outstanding solution for a variety of applications such

as speech recognition, image classification, and precision

medicine. Although the demand for analysis of sensitive data

such as financial data or medical data is increasing, traditional

machine learning services require large datasets to be used

during both training and inference to get meaningful results.

Therefore, privacy becomes a major concern when providing

cloud-based data analysis services. Homomorphic encryption

(HE), an encryption scheme which allows computation be-

tween encrypted data, is an ideal solution for this privacy

problem. By adopting HE, service providers do not need to

decrypt the private data to perform computation on them [1].

Contrary to so-called somewhat HE (SHE) schemes where

only a limited amount of computations are allowed, fully HE

(FHE) schemes accompany bootstrapping, a method of ini-

tializing noise in encrypted data, which allows an unbounded

amount of computation without decryption [2]. However, the

bootstrapping procedure itself consists of a massive amount

of homomorphic computation and accordingly requires large

parameters such as a large polynomial degree N , which slows

down the overall processing speed.
Residue number system (RNS)-based HE schemes are

widely used these days [3]–[7]. They avoid operations on very

large numbers by splitting a coefficient into several smaller

ones, which enables HE operations to have high potential

parallelism. In particular, RNS-HEAAN [3] is supported by

many HE libraries including Microsoft’s SEAL [8], IBM’s

HElib [9], and EPFL’s Lattigo [10]. However, the RNS-based

HE schemes still suffer from prohibitively slow processing

speed on conventional software platforms, which renders them

impractical for many critical HE-based applications.
Many studies have been conducted to accelerate HE

schemes using FPGAs [7], [11]–[19]. Specifically, a number

of works focus on the number theoretic transform (NTT)

to speedup the polynomial ring multiplication which is the

critical bottleneck of homomorphic operations. However, they

do not seriously consider the critical bootstrapping procedure.

For example, recent works that do not take into account the

bootstrapping procedure have a shallow circuit depth under ten

[7], [11]. Furthermore, to the best of the authors’ knowledge,

most of the previous works do not fully utilize parallelism

in the RNS domain, which is feasible on recent large-scale

FPGAs such as Xilinx UltraScale+ FPGAs on the Amazon

cloud.
This paper presents a novel hardware architecture of NTT on

an FPGA, especially focusing on the bootstrapping procedure

and RNS domain. Its contributions are as follows:

• We suggest bootstrappable parameter sets for an RNS-

based HE algorithm. The obtained special primes and

56

2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/20/$31.00 ©2020 IEEE
DOI 10.1109/FCCM48280.2020.00017

their scaled inverse values are applied to modular opera-

tors in an NTT butterfly unit (BU).

• We deploy multiple BUs while utilizing input/output

(I/O) and memory bandwidth efficiently. In addition, we

propose a highly pipelined NTT architecture that uses

various levels of parallelism between coefficients of a

polynomial, NTT stages, and moduli.

• We reduce the number of roots of unity stored in block

RAMs (BRAMs) from O(N) to O(logN) and generate

others on the fly. Specifically, roots of unity for all NTT

stages are generated in parallel every cycle.

The remainder of this paper is organized as follows. The

background is introduced in Section II. Section III suggests

bootstrappable parameters for an RNS-based HE scheme.

Sections IV and V present our root of unity generation method

and novel NTT hardware architecture. Section VI evaluates our

proposed design and Section VII concludes this paper.

II. BACKGROUND

A. Number Theoretic Transform

Instead of performing on a complex number field (C),

discrete fourier transform (DFT) can be generalized to other

rings. We are interested in the case where the ring is over

a finite field, or more specifically where the ring is integers

modulo a prime p. We call this DFT on Zp an NTT. Many

algorithms for fast DFT on size N vectors with the time

complexity O(N logN) (e.g., Cooley-Tukey [20]) can also be

applied to NTT.

We call ω an N th root of unity (or a twiddle factor) modulo

prime p, if it satisfies ωN ≡ 1 (mod p). A primitive N th root

of unity is an N th root of unity that generates every N th root

of unity multiplicatively. By definition, the primitive N th root

of unity is required to perform DFT on N -sized vectors. It is

known that there exists a primitive N th root of unity modulo

prime p if and only if p ≡ 1 (mod N) holds.

In lattice-based cryptography including HE, we usually

work over a ring Zp[x]/〈xN +1〉 where N is a power of two

and p is a prime. Multiplication in such a ring corresponds

to negative wrapped convolutions, whereas an NTT-multiply-

inverse NTT (INTT) paradigm performs multiplication over a

ring Zp[x]/〈xN − 1〉, which corresponds to normal convolu-

tions. With a slight modification to NTT and INTT algorithms,

we also can perform multiplication over Zp[x]/〈xN + 1〉
efficiently [21]. To use this modification, the modulus p should

satisfy p ≡ 1 (mod 2N), whereas the normal NTT/INTT

requires p ≡ 1 (mod N). In this paper, we follow this

modified framework for efficiency and with slight abuse of

notation we call these modified algorithms NTT and INTT.

The efficient INTT for negative convolution is described in

Algorithm 1. For the sake of simplicity, the last scaling step is

omitted. This algorithm takes the list of negative powers of a

fixed primitive (2N)th root of unity ψ in bit-reversal order as

an input, which is denoted as Ψ−1
rev . More precisely, Ψ−1

rev[i]
contains ψ−j , where j is the bit-reverse of i.

Typically, an NTT/INTT is performed using BUs which are

building blocks. The function ButterflyUnit(a[j], a[j + t], W ,

Algorithm 1 INTT based on Gentleman-Sande butterfly [21]

Input: a = (a[0], a[1], · · · , a[N − 2], a[N − 1]), p,

Ψ−1
rev = (Ψ−1

rev[0],Ψ
−1
rev[1], · · · ,Ψ−1

rev[N − 1])
Output: a ← INTT(a)

1: t = 1
2: for (m = N ; m > 1; m = m/2) do
3: j1 = 0
4: h = m/2
5: for (i = 0; i < h; i = i+ 1) do
6: j2 = j1 + t− 1
7: W = Ψ−1

rev[h+ i]
8: for (j = j1; j ≤ j2; j = j + 1) do
9: ButterflyUnit(a[j], a[j + t], W , p)

10: end for
11: j1 = j1 + 2× t
12: end for
13: t = 2× t
14: end for
15: return a

p) in Algorithm 1 computes (a[j]−a[j+ t]) ·W (mod p) and

a[j] + a[j + t] (mod p) and stores the results in a[j + t] and

a[j], respectively. When the number of input samples is N ,

the number of stages of NTT is logN (line 2) and each stage

consists of N
2 radix-2 BUs (lines 5 and 8), and thus the total

number of BUs is N
2 × logN .

B. RNS-HEAAN and Types of Moduli

HEAAN, also known as the CKKS scheme, is one of the

most promising HE schemes [22]. This scheme is an invaluable

solution to HE-based applications because it supports approx-

imate arithmetic with fixed point numbers. More precisely, its

message space is a ring of complex number vectors CN/2 with

certain precision. The main idea of HEAAN is to consider the

noise which is originally added to the plaintext for security as a

part of error occurring during approximate computations. That

is, unlike concurrent HE schemes, HEAAN does not separate

the message with the noise. HEAAN works over a polynomial

ring RQ = ZQ[x]/〈xN + 1〉, where Q is a large modulus
(Q = Πl

i=0qi). To encrypt a message in the ring C
N/2, we

first encode the message into a plaintext in a set of moderate

size elements (e.g., each coefficient being smaller than q0).

The plaintext m is then encrypted as a ciphertext ct = (a, b
= as + m + e) which is in R2

Q, where s, e ∈ RQ refer to a

small secret key and a small noise, respectively.

Its full RNS-based variant called RNS-HEAAN splits a

large coefficient of a polynomial into several smaller coef-

ficients to avoid operations on very large numbers, which

assures high potential parallelism [3]. However, it is not fully

parallelized on existing CPU platforms but provides a good

opportunity for custom hardware acceleration.

A homomorphic multiplier (HomMult) is one of the most-

used homomorphic operators, but at the same time it is one

of the biggest obstacles to the practical use of end-to-end

HE-based applications because it is too time-consuming. This

57

TABLE I
PARAMETER SETTING OF PREVIOUS WORKS AND OUR SUGGESTED ONES

λ dnum N l + 1 k logQ logP logPQ logq0 logqi logpi
RNS-HEAAN [3] 73 1 215 11 12 611 660 1271 62 55 55
RNS-HEAAN [4] 108 4 216 24 6 1,090 273 1363 62 45 -
RNS-HEAAN [4] 105 7 216 28 - 1,270 182 1452 62 45 -

HEAX [11] Set-A 128.1 - 212 2 - - - 109 - - -
HEAX [11] Set-B 128.5 - 213 4 - - - 218 - - -
HEAX [11] Set-C 128.1 - 214 8 - - - 438 - - -

Our Set-A 129.8 2 217 36 16 1,882 992 2874 62 52 62
Our Set-B 127.3 3 217 42 12 2,194 744 2938 62 52 62

inefficiency of HomMult comes from its complicatedness. For

example, HomMult is composed of several large degree poly-

nomial ring multiplications and also non-arithmetic operations

such as changing moduli and rounding. More precisely, for

controlling the noise to grow at a reasonable rate for each

HomMult, HE literatures utilize so-called Modup technique in

HomMult. In a nutshell, the Modup procedure first converts

an element in RQ into the RPQ domain by changing the

modulus, where P is a product of primes (P = Πk
i=1pi). After

some operations in RPQ, Modup sends the result back to R2
Q

by scaling down 1/P and rounding. For a detailed description

of HomMult, we refer the readers to [3], [22].

To achieve reasonable timing, it is inevitable to utilize NTT

for large degree polynomial ring multiplications. However, the

ring elements cannot stay in the NTT domain because the

non-arithmetic operations do not commute with NTT/INTT.

Therefore, for every non-arithmetic step, we need to perform

INTT and NTT before and after the operations. The point

here is that frequent NTT/INTT is the critical bottleneck of

HomMult and HE schemes.

The partial moduli introduced above (qi and pi) are cate-

gorized into three types as follows:

• Base modulus (q0): Whenever each HomMult is per-

formed, the number of qis decreases by 1, which means

that the circuit depth decreases by 1, and this modulus is

the last remaining one.

• Rescale modulus (qi, where 1 ≤ i ≤ l): The number of

rescale moduli refers to the depth of a circuit. Typically,

it is advantageous to make this number large to avoid

bootstrapping as often as possible.

• Modup modulus (pi, where 1 ≤ i ≤ k): These are used to

scale down the size of noises incurred during HomMult.

For area efficient modular multiplier (ModMult) design,

Kim et al. represented these moduli and their scaled inverse

values by a signed binary form with the minimum Hamming

weight [14]. Although their approach is adopted in this paper,

it is amended for our suggested bootstrappable parameters.

III. PARAMETERS FOR BOOTSTRAPPABLE RNS-HEAAN

HE schemes encrypt a message using noise. However,

the magnitude of the noise increases as homomorphic op-

erations are performed on the encrypted data. Specifically,

it grows rapidly whenever HomMult is performed. If the

magnitude exceeds a specific level, the correct message cannot

be obtained after decryption. Here, the number of HomMults

before reaching this threshold is called the circuit depth.

The bootstrapping procedure that resets the noise and the

circuit depth allows unlimited homomorphic operations on the

encrypted data. However, its extremely slow speed makes HE-

based solutions impractical. There are two approaches to speed

up HE schemes with the bootstrapping: (i) accelerating the

bootstrapping procedure itself; and (ii) increasing the interval

between bootstrapping, i.e. the circuit depth. This paper fo-

cuses on the latter one. Generally, the bootstrapping procedure

consumes the circuit depth of 15-20 itself. Therefore, for a

practical design that requires a sufficient depth such as 20-25,

the initial circuit depth should be set to around 40.

Table I compares parameters used in previous works and

our suggested ones. In early studies, the security parameter λ
of 80 was widely used [3]. However, for a variety of recent

fields that deal with private data, λ needs to be increased to

128. As shown in the second through fourth rows, parameters

of the original RNS-HEAAN scheme [3] and its variant [4] do

not satisfy the 128 security. Meanwhile, as shown in the fifth

through seventh rows, parameters of HEAX that satisfy the

security of 128 do not consider bootstrapping, and therefore

HomMults are allowed only less than 8 times [11]. The last

two rows show our suggested parameters. The main difference

between our two parameters is the number of evaluation keys,

dnum. In the original RNS-HEAAN scheme [3], the size of

logP is set to be similar to the size of logQ. To increase the

initial circuit depth by around 40, logQ should be increased

but there is an upper limit on the size of logPQ to ensure

the security. To resolve this issue, Han et al. decompose

ciphertexts by increasing dnum [4]. As a result, logQ is

set to logP × dnum. However, as dnum increases, the size

of memory to store evaluation keys increases, and therefore

they cannot be stored in internal memory. Furthermore, NTT

needs to be performed dnum times more, which significantly

increases latency. Therefore, as shown in the third column of

Table I, we carefully chose 2 and 3 as dnum which are small

enough and achieve the circuit depth around 40.

In our parameter sets, the size of base modulus, logq0, is

set to 62 to preserve precision of a decrypted message, which

is the same as in [3] and [4]. On the other hand, we set

the size of rescale moduli, logqi, to 52, which satisfies the

following two criteria: First, it is large enough to do accurate

approximate computation in RNS-HEAAN. Second, it is large

enough to find sufficiently many lightweight prime numbers

which are introduced in [14]. Using these primes, we can

58

TABLE II
qi FOR A BASE MODULUS (i = 0) AND RESCALE MODULI (1 ≤ i ≤ l)

i qi i qi
0 261 − 226 + 1 21 251 − 224 + 221 + 218 + 1
1 251 − 229 − 219 + 1 22 251 − 223 + 220 + 1
2 251 − 228 − 223 + 219 + 1 23 251 − 223 + 221 − 218 + 1
3 251 − 228 − 222 + 1 24 251 + 221 − 218 + 1
4 251 − 228 + 226 + 220 + 1 25 251 + 222 − 220 − 218 + 1
5 251 − 227 − 224 + 222 + 1 26 251 + 222 + 220 + 1
6 251 − 227 − 219 + 1 27 251 + 223 + 220 + 218 + 1
7 251 − 227 + 224 + 1 28 251 + 225 − 223 − 221 + 1
8 251 − 226 − 222 − 219 + 1 29 251 + 225 − 222 + 220 + 1
9 251 − 226 + 223 + 220 + 1 30 251 + 225 + 1
10 251 − 226 + 224 − 218 + 1 31 251 + 225 + 219 + 1
11 251 − 225 − 223 + 219 + 1 32 251 + 225 + 221 + 1
12 251 − 225 − 222 − 220 + 1 33 251 + 225 + 222 + 219 + 1
13 251 − 225 − 222 + 218 + 1 34 251 + 226 − 220 − 218 + 1
14 251 − 225 − 221 − 218 + 1 35 251 + 226 + 221 + 218 + 1
15 251 − 225 + 220 − 218 + 1 36 251 + 227 − 224 − 221 + 1
16 251 − 225 + 223 − 219 + 1 37 251 + 228 + 218 + 1
17 251 − 225 + 223 + 220 + 1 38 251 + 228 + 220 + 1
18 251 − 224 + 219 + 1 39 251 + 229 + 1
19 251 − 230 − 220 + 1 40 251 − 230 + 219 + 1
20 251 − 229 − 222 + 218 + 1 41 251 + 229 + 221 + 218 + 1

TABLE III
pi FOR MODUP MODULI (1 ≤ i ≤ k)

i pi i pi
1 261 − 224 + 1 9 261 − 222 + 219 + 1
2 261 − 221 + 1 10 261 + 222 + 220 + 1
3 261 + 223 − 218 + 1 11 261 + 223 + 221 + 1
4 261 + 224 − 219 + 1 12 261 + 225 + 223 + 1
5 261 + 227 + 221 + 1 13 261 + 228 − 225 + 1
6 261 + 229 − 222 + 1 14 261 + 229 + 219 + 1
7 261 + 230 + 218 + 1 15 261 + 230 + 220 + 1
8 261 + 230 + 226 + 1 16 261 + 230 + 228 + 1

speed up ModMult by replacing integer multiplication with

bit-shift and addition. There is a relatively small limit when

determining the size of modup moduli, logpi. However, the

product of modup moduli must be larger than a certain value.

In other words, as each modup modulus becomes smaller, the

number of modup moduli increases. Since we already have

62-bit modular operators for the base modulus, the size of

modup moduli is set to 62. All our suggested prime numbers

for base/rescale moduli and modup moduli are shown in Table

II and Table III, respectively. To conserve space, their scaled

inverse values are omitted. Our moduli and scaled inverse

values have Hamming weights of 5 or less, which allows an

area-efficient hardware design.

Our suggested parameter sets, which require a larger N
value, 217, and more moduli than the previous works, increase

execution times in NTT and INTT. To speed up the NTT and

INTT, a novel hardware architecture that fully exploits various

levels of parallelism is proposed in Section V.

IV. ON-THE-FLY ROOT OF UNITY GENERATION

As we noted in Section II-A, the root of unity is required

to perform NTT. In previous NTT hardware designs, all roots

of unity are naively stored in internal memory [7], [11]–[13],

[16], [17], [23], [24]. However, the required memory is linear

Algorithm 2 INTT with on-the-fly roots of unity generation

Input: a = (a[0], a[1], · · · , a[N − 2], a[N − 1]), p,

Ψ−1
pow = (Ψ−1

pow[0],Ψ
−1
pow[1], · · · ,Ψ−1

pow[logN − 1])
Output: a ← INTT(a)

1: t = 1
2: l = 0
3: for (m = N ; m > 1; m = m/2) do
4: h = m/2
5: W = Ψ−1

pow[l]
6: for (k = 0; k < h; k = k + 1) do
7: i = BitReverse(k, log h)
8: j1 = i× 2× t
9: j2 = j1 + t

10: for (j = j1; j < j2; j = j + 1) do
11: ButterflyUnit(a[j], a[j + t], W , p)

12: end for
13: W =W ×Ψ−1

pow[l + 1]
14: end for
15: t = 2× t
16: l = l + 1
17: end for
18: return a

in N and (l + 1) · k, and it leads storing all roots of unity in

internal memory to be infeasible when N and/or (l + 1) · k
is too large. For example in INTT with our parameter sets,

the naive method requires total 400Mb of internal memory

(400Mb ≈ (62b× 17 + 52b× 41)× 217).

In this aspect, we designed an NTT/INTT algorithm without

storing all roots of unity: it rather stores only a few roots

of unity and computes other roots of unity on the fly from

the stored ones. This algorithm captures the trade-off between

computation and storage. However, our modification does not

increase the computation asymptotically, i.e. the computational

cost is still O(N logN). In contrast, it decreases the storage

from O(N) bits to O(logN) bits.

Our method for INTT is described in Algorithm 2. Again,

the scaling step is omitted. The algorithm takes the list of

(−2i)th powers of a fixed primitive (2N)th root of unity ψ as

an input, which is denoted as Ψ−1
pow. More precisely, Ψ−1

pow[i]

contains ψ−2i . The notation BitReverse(k, log h) is for the bit

reverse of k as a log h-bit integer. The main differences from

Algorithm 1 are as follows: (i) it takes Ψ−1
pow instead of Ψ−1

rev ,

decreasing the input size; (ii) instead of taking the roots of

unity in bit-reversed order, the bit-reversing procedure is done

in line 7; and (iii) instead of precomputing all roots of unity,

roots of unity are generated and updated in lines 2, 5, 13, and

16.

Note that there are several prior works that generate roots

of unity on-the-fly [18], [19], [25]. However, our hardware

design differs from them in that multiple roots of unity for all

INTT stages with respective moduli are generated in parallel.

In addition, roots of unity are generated every cycle by using

a fully pipelined ModMult design. Lastly, a special ordering

method is used. The details are explained in Section V-D.

59

Fig. 1. Architecture of a radix-2 BU for INTT.

V. NTT HARDWARE ARCHITECTURE

In this section, our proposed hardware architecture of NTT

is presented. NTT and INTT have almost the same architec-

ture, except that their directions are reversed and a last scaling

step is added to INTT. Therefore, we reuse the same circuits

for both NTT and INTT, and the architecture of INTT is only

presented in this paper.

A. Butterfly Unit

First, we describe a BU that is a fundamental unit of INTT.

Fig. 1 shows a radix-2 BU architecture for INTT. In this figure,

A and B represent input samples, while A′ and B′ represent

output samples. In addition, W refers to a root of unity.

The BU architecture is composed of a modular subtractor

(ModSub), a modular adder (ModAdd), and a ModMult. The

ModSub and ModAdd architectures are almost the same as

in [12] and require a two cycle delay. For the ModMult

architecture, we adopt the fully pipelined Barrett ModMult

architecture with lightweight moduli in [14]. Since the maxi-

mum Hamming weight of our moduli and scaled inverse values

is one greater than that in [14], our ModMult design requires

a one cycle longer delay that is 21 cycles. Since the BU is a

fully pipelined design, two input samples are continuously put

into the BU and two output samples are generated per cycle

after a delay. Since ModMult is only applied to generation of

B′, B′ has a 21 cycle longer delay than A′. When multiple

BUs are connected in series, the output samples re-enter to

the next BU as input samples.

B. Group of Butterfly Units

To improve the speed of INTT on an FPGA, multiple BUs

should be exploited at the same time. However, it is difficult

to deploy all N
2 × logN BUs on an FPGA when N is very

large because each BU includes expensive modular operators

[15]. Therefore, we need to use a few BUs selectively. There

are mainly two methods in deployment of BUs: (i) BUs are

deployed in parallel for the same stage; and (ii) a single (or

a few) BU is deployed for each stage and the multiple BUs

are connected in serial. The first method is intuitive and its

intermediate data ordering is simple. However, it requires a

high I/O or memory bandwidth in a short time as the number

of BUs increases. Therefore, we adopt the second method.

However, the serial deployment method incurs a long delay

when integrated with Algorithm 2 that changes the order of

input samples. Fig. 2 shows an example of the processing

order when N is 32. In this figure, each row corresponds

to each operation of BU. The first and second columns of

Fig. 2. Processing order of INTT by Algorithm 2 when N is 32. The arrows
represent dependencies between gray colored samples.

Fig. 3. Modified order of Fig. 2 when four BUs per stage (c = 4) are used
in parallel. In this figure, p.t. refers to a pipetime.

each stage represent indices of input samples. The exponents

of roots of unity shown in the third column of each stage

increase by a fixed amount called the update constant, and the

update constant is doubled as the stage index is incremented

by 1. As shown in the case between Stage 1 and Stage 2, the

input sample with the index 2 of Stage 2 is put after the input

sample with the same index of Stage 1 is processed, which is

represented by an arrow. The next three stages have the same

dependencies, and therefore the delay becomes accumulated.

To solve this problem, additional BUs are deployed for each

stage. We determine the number of BUs per stage, denoted

by c, based on the total number of available digital signal

processing (DSP) slices on a target FPGA because the number

of DSP slices is usually more limited than those of look-up

tables (LUTs) and flip flops (FFs). We then divide an input

sample sequence into c parts, and the partial sequences are

put into the BUs. Fig. 3 shows the modified order of Fig. 2,

including cycles, when c is four. In this figure, Ci represents

i-th BU core. The input samples with indices 0, 2, 4, and 6

of Stage 1 are only processed by ModAdd in C1, C3, C2, and

C4, respectively, and thus C5 and C6 of Stage 2 start after

the 2 cycle delay. On the other hand, ModSub and ModMult

60

Fig. 4. Hardware architecture of GBU when four BUs are deployed per stage.

are applied to the input samples with indices 1, 3, 5, and 7 of

Stage 1, so C7 and C8 of Stage 2 start after the 23 cycle delay.

BU cores in Stage 3 work in the same manner. Since we aim at

a large N value, 217, the accumulated delay in Stages 1-3 (the

critical delay is 23×3 cycles) is negligible, and therefore the

throughput is almost 8 samples/cycle. Meanwhile, BU cores

of Stage 4 receive input samples with the index difference of

8, but the input samples are ready after at least the N/(2 ×
2 × 4) cycle delay (when N = 217, the delay is 213 cycles).

Therefore, a reordering buffer (RB) to refresh the order is

needed. BU cores between two RBs comprise a group of BUs

(GBU). The number of stages in a single GBU and the number

of GBUs in the whole INTT design are calculated by 1+ logc
and 	logN/(1 + logc)
, respectively.

Fig. 4 shows the fully pipelined hardware architecture of

a single GBU when c is four. In this figure, intermediate and

output samples generated by ModMults in BUs are represented

by bold lines. The GBU receives eight input samples and 12

roots of unity generated from a root of unity generator (RUG)

every cycle. After a delay, eight output samples are generated

and transferred to the next RB every cycle.

To further improve the throughput, a different level of

parallelism is used. To be specific, GBUs using different

moduli work in parallel and pipelined manner. In HomMult

of RNS-HEAAN, base and rescale moduli are only used for

INTT [3], [4]. For example, when our parameter Set-B is used,

42 moduli are used for INTT. If the c value is set to four, there

are 6 (= 	log217/(1+ log4)
) GBUs and the pipetime for each

GBU is about 16K cycles (= 217/8). In this case, 16K×(5+42)
cycles are needed to complete the INTT on a polynomial.

C. Reordering Buffer

The i-th RB stores output samples generated by the i-th
GBU, and transfers these samples to the (i+1)-th GBU after

reordering. Fig. 5 shows the architecture of the first RB (RB1)

implemented in BRAMs, including the write/read order, when

N and c are 217 and 4, respectively. For reordering, eight

samples, which are generated by the first GBU every cycle, are

stored in respective buffers in RB1. Four BU cores in Stage 4

reads eight samples with the index difference of 8 from RB1.

For example, samples with indices 0, 8, ..., 48, and 56 are

read at the first cycle. If these samples, which are generated

by the same BU core, are stored in the same BRAM buffer, the

bandwidth of the BRAM needs to be large, which reduces the

Fig. 5. The architecture of the first RB implemented in BRAMs, including
the write/read orders, when N and c are 217 and 4, respectively.

Fig. 6. Hardware architecture of RUG for a single GBU when N and c are
217 and 4, respectively.

utilization of BRAMs. Therefore, an output sample sequence

from each BU core is written in eight separate BRAM buffers.

Although not shown in Fig. 5 for the sake of simplicity, a

double buffering technique is used for simultaneous reading

and writing, and therefore 128 (= 2×8×8) 62-bit × 2K-sized

BRAM buffers are included in each RB. When transferred

to the four BU cores in Stage 4, eight samples are read

horizontally as shown in Fig. 5. The next RBs have the same

architecture except that they read 8i−1 samples vertically from

the same buffer and then horizontally move to the next buffer.

D. Roots of Unity Generator

RUG generates all roots of unity from the base roots of unity
of which number is O(logN) and provides them for GBUs

on the fly. Fig. 6 shows the block diagram of a single RUG

architecture when N and c are 217 and 4, respectively. Each

GBU needs 12 roots of unity, but C5 and C7, C6 and C8, and

C9 through C12 use the same roots of unity, respectively, as

shown in Fig. 3. Therefore, each RUG only generates seven

roots of unity, denoted by WC1, WC2, WC3, WC4, WC5&7,

WC6&8, and WC9-12, every cycle. These seven roots of unity

comprise a group of roots of unity, WGi, and are transferred

to the i-th GBU. Simultaneously, they are put into ModMults

in RUG to generate the next roots of unity.

Fig. 7 shows the ROM arrangement to store base roots of

unity for both NTT and INTT when our parameter Set-B is

used. In this figure, different colors refer to base roots of

unity for different moduli. As mentioned above, each RUG

61

Fig. 7. ROM arrangement to store base roots of unity for both NTT and
INTT when our parameter Set-B in Table I is used.

needs seven base roots of unity for each modulus. However,

the 21 cycle delay incurred by ModMult changes the hardware

architecture of RUG: (i) during the delay, roots of unity stored

in ROMs are used as input operands of ModMults, which

increases the number of base roots of unity to be stored; (ii)

after the delay, roots of unity generated by ModMults are used

as input operands. Since roots of unity for GBU1 vary every

cycle, 21 base roots of unity are needed. On the other hand,

those for GBU2 vary every eight cycles, and therefore three

base roots of unity (= 	21/8
) are stored. Lastly, those for

GBU3, GBU4, GBU5, and GBU6 vary at least every 64 cycles,

so only a single base root of unity is required. The 21 base

roots of unity for GBU1 are directly transferred to ModMults.

On the other hand, to minimize the BRAM bandwidth, the

base roots of unity for other GBUs are prefetched into registers

denoted by R1 in Fig. 6 and exploited during the next pipetime

with the next modulus. Likewise, the update constants are

moved from ROMs to registers denoted by R2 and reused.

Since the GBU receives seven base roots of unity at the

same time, base roots of unity are stored in seven separate

ROMs. Basically, base roots of unity for base and modup

moduli are stored in 62-bit ROMs while those for the rescale

moduli are stored in 52-bit ROMs. However, several base roots

of unity for rescale moduli are moved to 62-bit ROMs to

increase the utilization of BRAMs. For example, under our

parameter Set-B, base roots of unity for p1 through p12 and

q0 through q5 are stored in 62-bit ROMs while those for q6
through q41 are stored in 52-bit ROMs as shown in Fig. 7.

E. Modulus Table

Our parameter sets have more than 50 moduli and their

scaled inverse values. These values are stored in the modulus

table (MT), and a pair is chosen for the first GBU and RUG

using a selecting signal. This pair is delayed by registers and

provided to next GBUs and RUGs in a pipelined manner.

F. Overall Architecture

Fig. 8 shows the overall architecture of our proposed INTT

design for our bootstrappable parameter sets. We set c to four,

but this value is configurable. Specifically, higher c assures

Fig. 8. Overall INTT architecture for our bootstrappable parameter sets.

a higher throughput, a shorter delay, and a fewer BRAMs

for RBs but requires more DSP slices. Our INTT architecture

includes six GBUs, five RBs, six RUGs, and a single MT.

Since only the circuits for the last two stages are used in

GBU6, the remaining circuits are used for a scaling step.

VI. EVALUATION

A. Hardware Implementation Results

We implemented the INTT design using Verilog HDL,

and the Xilinx Vivado Design Suite (2019.1) was used for

synthesis, place-and-route, and bitstream generation stages.

The generated bitstream was programmed on the Xilinx Ul-

traScale FPGA (xcvu190-2flgc2104e) including 1,800 DSP

slices, 132.9Mbit BRAMs, 1M LUTs, and 2M FFs.

The verification was conducted as follows: A test input

polynomial was generated by an external host PC. It was

transferred to the FPGA via an I/O interface module and an

input buffer. Specifically, the I/O interface module received the

input data and stored them in the input buffer. Eight samples

gathered in this buffer were then sent to our INTT module

every cycle. After INTT, the output data were sent back to the

host PC via the output buffer and I/O interface module.

Table IV compares our proposed INTT design with three

previous designs. The second row of this table shows target

Xilinx FPGA devices, and the third through fifth rows present

N , l + 1, and the maximum bit-width of moduli, respec-

tively. The sixth through eleventh rows show the maximum

frequency, the numbers of LUTs, FFs, and DSP slices, the size

of BRAM, and the throughput normalized to [16], respectively.

Note that the throughput is affected not by N but by the num-

ber of BU cores working in parallel. To compare throughputs

of the previous and proposed designs when a similar number

of hardware resources are used, the throughputs are divided

by the numbers of DSP slices and LUTs, which are shown in

the last two rows. Originally, the previous works are designed

for larger functions such as polynomial multiplication but

chosen for this evaluation because they reuse the same circuits

for INTT and other functions. Note that additional hardware

resources deployed for non-INTT operations in Roy et al. [7]

are excluded from this table. The throughputs of the previous

works are calculated using the number of cycles or execution

time of INTT provided in the papers.

Chen et al. [16] only deploy two BUs on an FPGA, and

therefore the design uses the lowest resources and shows

the second lowest throughput among the four designs. Even

though it shows the highest throughput/(DSP or LUT) value, a

single specific modulus (e.g., 257+25·213+1) is only available

62

TABLE IV
COMPARISON OF INTT HARDWARE DESIGNS

Design Chen [16] Roy [7] Ozturk [12] Proposed
Device xc6slx100 xczu9eg xc7vx690t xcvu190
No. of samples 211 212 215 217

No. of moduli 1 6 41 ∼42
Max. bit-width 58 30 32 62
fmax (MHz) 210 200 250 200
kLUT 6 55 219 365
kFF 19 22 91 335
DSP 64 182 768 1,332
BRAM (KB) 113 1,746 869 10,163
Norm. throughput 1.00 0.33 4.65 19.97
Norm. throu./DSP 1.00 0.11 0.39 0.96
Norm. throu./LUT 1.00 0.04 0.13 0.34

TABLE V
FPGA RESOURCE BREAKDOWN

Module kLUT kFF BRAM (KB) DSP
GBUs 183 (50%) 203 (60%) 0 912 (68%)
RBs 61 (17%) 45 (13%) 10,080 (99%) 0
RUGs 80 (22%) 86 (26%) 83 (1%) 420 (32%)
MT 41 (11%) 2 (1%) 0 0

for modular reduction. As a result, it cannot be used in RNS-

based HE schemes. Roy et al. [7] show the lowest throughput

in this table. However, the authors claim the throughput can

be improved by deploying more core processors (e.g., ten core

processors on the UltraScale+ FPGA). In addition, this design

supports modular reduction with several moduli. Nevertheless,

the low throughput/(DSP or LUT) and a small number of

moduli make the design impractical for real applications.

Ozturk et al. [12] exploit more resources on a larger FPGA

for high-throughput than the prior two designs. In addition,

this design supports arbitrary moduli. Therefore, it is the

most suitable design to compare with ours. Our design shows

the highest throughput that is 4× higher than that of [12].

Furthermore, the throughput/(DSP or LUT) is 2-3× larger than

that of [12]. These results come from the fact that our design

fully utilizes various levels of parallelism in the RNS domain.

Table V shows the FPGA resource breakdown of our design.

Except for BRAMs, six GBUs occupy most of the resources.

To be specific, they use 50% of LUTs and 68% of DSP slices.

For BRAMs, five RBs use 10MB, which is the majority in

the whole design. This size can be reduced by increasing the

number of BUs that use DSP slices, which provides trade-off

choices depending on available resources.

Table VI shows the improvement in internal memory size

by our on-the-fly root of unity generation method. The first

column presents our two parameters, and the second and third

columns show the memory sizes for roots of unity of the con-

ventional and our proposed methods, respectively. Note that

78.75KB BRAMs are allocated in our actual implementation

(see Fig. 7). As shown in the last column, the memory sizes

are reduced by more than 99% because the number of roots

of unity to be stored decreases from O(N) to O(logN).

B. Execution Time

In this subsection, our FPGA implementation is compared

with the software implementation of INTT in RNS-HEAAN.

TABLE VI
IMPROVEMENT IN INTERNAL MEMORY SIZE FOR ROOTS OF UNITY

Parameter w/o our method w/ our method Improvement
Our Set-A 44.91MB 64.76KB 99.86%
Our Set-B 45.91MB 70.29KB 99.85%

TABLE VII
EXECUTION TIME OF INTT IMPLEMENTATIONS

Parameter Software FPGA implementation
implementation [4] Chen [16] Proposed

Our Set-A 387ms 93ms 3.28ms
Our Set-B 446ms 109ms 3.76ms

Note that the reference software code provided by the authors

of [4] was the best code available for comparison, but it still

has room for optimization. The reference software code was

executed on the Intel i9-9820X CPU, running at the frequency

of 3.3GHz and possessing the 16.5MB cache.

A test input was generated by the software code. Specifi-

cally, randomly selected complex numbers were encoded into

a single plaintext vector. By encrypting this vector, a ciphertext

polynomial was generated. This polynomial was forward-

transformed and then transferred to the software implementa-

tion and our FPGA implementation. The execution time of the

software implementation consumed only in the INTT function

was measured using the Chrono C++ library. On the other

hand, the execution time of our FPGA implementation was

calculated by dividing the total number of cycles to complete

INTT on the test input by the maximum frequency.

Table VII shows the execution times of the software imple-

mentation and the previous and proposed FPGA implemen-

tations. Although the previous hardware designs in Table IV

cannot support our bootstrappable parameters, the execution

times of [16], which are estimated using the number of cycles

presented in the paper, are included in Table VII. The second

and third rows show the results when our parameter Set-A and

Set-B are used, respectively. On average, the execution time

of our FPGA implementation is 118 and 28 times faster than

the execution times of the software implementation and the

previous FPGA implementation, respectively.

VII. CONCLUSION

In this paper, new parameter sets for the practical bootstrap-

pable RNS-HEAAN scheme are suggested. These parameter

sets are highly correlated with the final architecture and

performance. For example, we deployed many BUs running

in parallel and proposed a highly pipelined NTT architecture

exploiting various levels of parallelism in the RNS domain to

alleviate the increase in execution time caused by the large

parameters. In addition, we proposed the RUG algorithm and

its hardware architecture to limit the increase in internal mem-

ory size by the bootstrappable parameter sets. Furthermore,

the suggested moduli with low Hamming weights of 5 or less

allow the implementation of the ModMult in BU using shifters

and adders only. For future work, we plan to extend our NTT

design to a larger FPGA and apply it to HomMult of the

bootstrappable RNS-HEAAN scheme.

63

REFERENCES

[1] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J.
Wernsingm, "CryptoNets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy," in Proc. ICML, 2016.

[2] C. Gentry, "Fully Homomorphic Encryption Using Ideal Lattices," in
Proc. STOC, 2009.

[3] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, "A Full RNS Variant
of Approximate Homomorphic Encryption," in Proc. SAC, 2018.

[4] K. Han and D. Ki, "Better Bootstrapping for Approximate Homomorphic
Encryption," in Proc. CT-RSA, 2020.

[5] J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, "A Full RNS Variant
of FV Like Somewhat Homomorphic Encryption Schemes," in Proc.
SAC, 2016.

[6] Y. Son and J. H. Cheon, "Revisiting the Hybrid Attack on Sparse Secret
LWE and Application to HE Parameters," in Proc. WAHC, 2019.

[7] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
"FPGA-based High-Performance Parallel Architecture for Homomorphic
Computing on Encrypted Data," in Proc. HPCA, 2019.

[8] H. Chen, K. Laine, and R. Player, "Simple Encrypted Arithmetic Library
- SEAL v2.1," in Proc. FC, 2017.

[9] S. Halevi and V. Shoup, "Algorithms in HElib," in Proc. CRYPTO, 2014.
[10] Lattigo 1.3.0, [Online]. Available: http://github.com/ldsec/lattigo, 2019,

EPFL-LDS.
[11] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, "HEAX: High-Performance

Architecture for Computation on Homomorphically Encrypted Data in
the Cloud," in Proc. ASPLOS, 2020.

[12] E. Ozturk, Y. Doroz, E. Savas, and B. Sunar, "A Custom Accelerator
for Homomorphic Encryption Applications," IEEE Trans. Comput., vol.
66, no. 1, pp. 3-16, Jan. 2017.

[13] D. B. Cousins, K. Rohloff, and D. Sumorok, "Accelerating Secure
Computing with a Dedicated FPGA-based Homomorphic Encryption
Co-Processor," IEEE Trans. Emerging Topics Comput., vol. 5, no. 2,
pp. 193-206, Apr.-Jun., 2017.

[14] S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, "FPGA-based
Accelerators of Fully Pipelined Modular Multipliers for Homomorphic
Encryption," in Proc. ReConFig, 2019.

[15] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Hanley, "Opti-
mised Multiplication Architectures for Accelerating Fully Homomorphic
Encryption," IEEE Trans. Comput., vol 65. no. 9, pp.2794-2806, Sep.
2016.

[16] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung,
D. Pao, and I. Verbauwhede, "High-Speed Polynomial Multiplication
Architecture for Ring-LWE and SHE Cryptosystems," IEEE Trans.
Circuits Syst. I: Regular Papers, vol. 62, no. 1, pp. 157-166, Jan. 2015.

[17] T. Poppelmann, M. Naehrig, A. Putnam, and A. Macias, "Accelerating
Homomorphic Evaluation on Reconfigurable Hardware," in Proc. CHES,
2015.

[18] S. S. Roy, F. Vercauteren, J. Vliegen, and I. Verbauwhede, "Hard-
ware Assisted Fully Homomorphic Function Evaluation and Encrypted
Search," IEEE Trans. Comput., vol 66. no. 9, pp.1562-1572, Sep. 2017.

[19] S. S. Roy, K. Jarvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
"HEPCloud: An FPGA-based Multicore Processor for FV Somewhat
Homomorphic Function Evaluation," IEEE Trans. Comput., vol. 67, no.
11, pp. 1637-1650, Nov. 2018.

[20] J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine
Calculation of Complex Fourier Series," Math. comput., vol. 19, no.
90, pp. 297–301, Apr. 1965.

[21] P. Longa and M. Naehrig, "Speeding Up the Number Theoretic Trans-
form for Faster Ideal Lattice-based Cryptography," in Proc. CANS, 2016.

[22] J. H. Cheon, A. Kim, M. Kim, and Y. Song, "Homomorphic Encryption
for Arithmetic of Approximate Numbers," in Proc. ASIACRYPT, Nov.
2017.

[23] J.-H. Ye and M.-D. Shieh, "Low-Complexity VLSI Design of Large
Integer Multipliers for Fully Homomorphic Encryption," IEEE Trans.
Very Large Scale Integr. Syst., vol. 26, no. 9, pp. 1727-1736, Sep. 2018.

[24] W. Wang, X. Huang, N. Emmart, and C. Weems, "VLSI Design of a
Large-Number Multiplier for Fully Homomorphic Encryption," IEEE
Trans. Very Large Scale Integr. Syst., vol. 22, no. 9, pp. 1879-1887,
Sep. 2014.

[25] Y. Doroz, E. Ozturk, and B. Sunar, "Accelerating Fully Homomorphic
Encryption in Hardware," IEEE Trans. Comput., vol 64. no. 6, pp.1509-
1521, Jun. 2015.

64

