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Abstract—Wireshark-based debugging can be performed on
ordinary desktop computers at 1G speeds, but only powerful
computers can keep up with 10G. At 100G, this debugging
becomes virtually impossible to perform on a single machine.

This work presents FFShark, a Fast FPGA implementation
of Wireshark. The result is a compact, relatively inexpensive
passthrough device that can be inserted into any running 100G
network. Packets will travel through FFShark with no inter-
ruption and minimal additional latency. A developer can send
standard Wireshark filter programs to the FFShark device at
any time; packets that satisfy the filter will be copied and sent
back to the developer’s workstation over a separate connection.

We show that our open source passthrough device has lower
latency than commercial 100G switches, and that our design is
already capable of handling 400G speeds.

I. INTRODUCTION

Wireshark [1] is a software tool that allows network de-

velopers and administrators to inspect live network packets

without disrupting communications. This inspection requires

that a specified subset of packets be captured and then rele-

vant fields of the packet can be analyzed. This capability is

invaluable for network analysis and debugging. A key benefit

of Wireshark is its usage of the BSD Packet Filter (BPF),

which is supported by most OS kernels. The BPF technique

reduces memory copying and leads to significant performance

improvements.

High-performance processors can perform packet filtering

at 10G. As we move to 100G and beyond, using Wireshark

becomes impossible. For example, a 9th generation Intel i9-

9900KS processor is equipped with sixteen PCIe3.0 [2] lanes,

each with a maximum bandwidth of 8 Gbps [3]. To commu-

nicate 100 Gbps from the NIC to the CPU would require the

bandwidth of 13 out of 16 available PCIe lanes, assuming no

overhead. Beyond that, given a clock speed of 5 GHz [2], the

CPU would have to receive a packet via PCIe, filter it based

on the user’s specification, and potentially copy out the packet

in 1.6 or fewer clock cycles per 32 bit word. Even if the CPU

is otherwise unloaded and never suffers a cache miss, it is still

impossible to perform the requisite filtering at these speeds.

Aggressive multithreading might begin to make 100G filtering

possible on a CPU under very optimistic assumptions, but it

is impractical and not scalable to faster speeds.

Fig. 1. Architecture of FFShark. The Passthrough Sector is detailed in Fig. 4
and the Filtering Sector is detailed in Fig. 5.

To use Wireshark beyond 10 Gbps speeds, we pro-

pose FFShark. FFShark is an open source [4], low-latency

passthrough device that can be placed between any two points

in a network. It supports arbitrary filters written in the PCAP

filter syntax1 [5]. In debug, this can be used to perform

network-wide analysis of 100G traffic, e.g., monitoring all

traffic between two switches or between a data center and the

wide area network. The additional latency cost of FFShark is

comparable to that of a switch, making live system testing

possible.

FFShark is implemented using FPGA technology, where a

parallel array of filters will snoop on packet data (Fig. 1).

The filters are implemented as CPUs within the FPGA fabric

and natively emulate the BSD Packet Filter virtual machine

[6]. Additional circuitry distributes the incoming high-speed

network line into multiple lower speed streams, one for

each filtering CPU. FFShark can currently perform Wireshark

filtering in a real 100G network, but we will show that it can

operate correctly at speeds up to 400G (Section IV-C) and can

be immediately used once transceivers become available.

The remainder of the paper is organized as follows: Sec-

tion II offers a background discussion on Wireshark and the

BSD Packet Filter method. Section III presents related work.

Section IV details the design of FFShark, including high-

speed techniques and the filtering CPU. Section V presents

the implementation results. Finally, Section VI discusses future

work and Section VII concludes the paper.

1This is the syntax used by Wireshark
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II. BACKGROUND

On a typical desktop computer all incoming packets are

processed by the OS kernel and copied into the memory of

the correct user application. For live network debugging, a user

application such as Wireshark requests that packets are also

copied into its own memory. This section explains the method

used by Wireshark to efficiently copy packets of interest; this

method relies on the BSD Packet Filtering technique, which

is also explained in this section.

A. Wireshark Architecture

Wireshark allows a developer to request copies of packets

from the OS. Furthermore, the developer may not wish to see

all packets, so Wireshark also allows unwanted packets to be

hidden. A naı̈ve implementation would be to copy every single

packet into Wireshark’s memory, whereupon Wireshark would

only display the packets of interest. A much more efficient

solution would be to avoid copying unwanted packets in the

first place.

Fig. 2. Standard Wireshark operation.

Fig. 2 illustrates how Wireshark operates in a standard

OS environment. The developer enters a filter specifica-

tion in PCAP syntax [5]. For example, the expression

tcp src port 100 selects only TCP packets originating

from port 100. Wireshark compiles this expression into BPF

machine code (described in the next subsection) and installs

the filter code using a kernel system call. Packets arriving at

the Network Card are directed by the Kernel Packet Processing

through Sockets to the relevant User Application(s). Addition-

ally, all packets are copied to the BPF Filter and any packets

that match the filter described by the filter code are copied to

Wireshark’s user memory.

B. The BSD Packet Filter (BPF)

The BPF method results from the observation that “filtering

packets early and in-place pays off” [6]. Using this approach,

a user submits a BPF program that the kernel will execute

on each incoming packet. These programs are a sequence of

machine code instructions that are executed by an emulator in

the OS kernel. Any Wireshark-compatible OS is responsible

for correctly emulating the BPF machine. The kernel will

only copy the packet back to the user depending on the BPF

program’s return value.

A brief summary of the BPF machine is as follows. There

are two 32-bit registers: the Accumulator (A) and the auXil-

iary (X). The processor has byte-addressable read-only access

to an entire packet (headers included) and read/write access

to a small scratch memory. An instruction is defined by its

class (Table I), addressing mode, jump offsets, and immediate

value. The BPF instruction layout is shown in Fig. 3.

TABLE I
BPF INSTRUCTION CLASSES

NAME DESCRIPTION

LD Load from memory into A register

LDX Load from memory into X register

ST Store A register to scratch memory

STX Store X register to scratch memory

ALU Arithmetic and Logic instructions

JMP Conditional and unconditional branching

RET Returning (to signify acceptance or rejection)

MISC Miscellaneous

Fig. 3. BPF instruction layout. The numbers are bit indices.

III. RELATED WORK

Campbell and Lee [7] implemented a 100G Intrusion De-

tection System (IDS) using only commodity hardware. A

100G router was used to evenly distribute packets to several

worker machines [8]. To further reduce the load on individual

machines, a central management node can allow certain types

of traffic to bypass the IDS once determined to be safe. The

architecture of this IDS requires the operation of a 100G load

balancer and several high-performance CPU machines. This

has the advantage of using immediately available parts but is

not cost-effective.

A number of commercial 100G NICs and switches exist

that implement support for hardware packet filtering, each one

presenting its own proprietary API. Simple PCAP expressions

can be converted by nBPF [9] [10] to these vendor-specific

formats, but depending on a specific NIC’s supported opera-

tions only a limited subset of expressions can be translated.

Where nBPF makes use of filtering capabilities of commercial

100G hardware, FFShark natively implements the full BPF

standard as a separate device that can be inserted into a

network at any location. This satisfies our goal of maintaining

full compatibility with Wireshark.

Another type of 100G packet filtering involves automatically

generating an FPGA design from a higher-level filter descrip-

tion. This method takes advantage of the high performance

and reconfigurability of FPGAs, but aims to meet the needs of

system administrators who would prefer to use simple packet

filtering specifications. Xilinx netCope [11] generates VHDL

from a P4 filter specification [12]. Additionally, the more

general technique of High-Level Synthesis can potentially

allow a developer to write their own packet filtering algorithm

and implement it on an FPGA. These approaches offer little to
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no support for changing the filter specification interactively;

FFshark is an FPGA overlay that conforms to the standard

BPF interface and does not require generating a new FPGA

configuration when changing filters.

FMAD Engineering produces a sustained 100G packet

capture solution [13]. The product is a rack-mounted box with

two QSFP28 input ports and an array of ten SSDs; the device

accepts BPF filters and saves accepted packets for later review.

FMAD is a commercial product that supports the same filtering

capability as FFShark and can run at speeds up to 100G.

However, FFShark is open source and is available for the

community to customize and use for experimentation. FFShark

is also shown to be usable in a 400G network.

Bittware produces a closed source 10/25/40/100G packet

broker device with packet filtering [14]. This is a PCIe expan-

sion card with four QSFP28 ports. For filtering it supports

10G speeds and runtime configuration of filter parameters,

which can be synthesized from PCAP filter expressions. By

changing the FPGA image, the solution can be upgraded to

support 100G filtering without needing additional hardware.

The description of this Bittware product says that it supports a

“set of industry-standard PCAP ASCII expressions” implying

that it does not have the full flexibility of the BPF engine, such

as in FFShark. Also, like the FMAD product just described,

the Bittware product is a commercial product while FFShark

has the advantages of being open source and being ready for

400G speeds.

IV. DESIGN

Fig. 1 shows an overview of FFShark. The design con-

sists of a Passthrough Sector (Fig. 4) and a Filtering Sector

(Fig. 5). The FPGA and ARM components are implemented

using a Xilinx Zynq Ultrascale+ XCZU19EG-FFVC1760-2-

I (MPSoC) [15]. The Filtering Sector is itself divided into

three subcomponents: a Chopper, a number of BPF Cores,

and a Forwarder. The Chopper splits the high-speed input data

into several queues operating at a slower speed. Each queue

feeds into a BPF Core, which executes a BPF filter program.

Finally, if a packet is accepted, the Forwarder sends it out of

the filter. Each of these subcomponents is detailed in a separate

subsection, below.

A. Passthrough Sector

Fig. 4. Design of the passthrough sector.

The Passthrough Sector is shown in Fig. 4. The 100G

hardened CMAC in the Ultrascale+ device provides a local

bus interface called LBUS. Since all other Xilinx cores use

AXI, an LBUS-to-AXIS converter circuit [16] converts the raw

signals from the PHY layer to standard AXI Stream messages

and vice-versa. The AXI Streaming channels are connected

together allowing all messages to be directly forwarded to the

opposite port.

Fig. 5. Design of the Filtering Sector.

The two QSFP28 transceivers operate at a clock speed of ap-

proximately 323 MHz, but are driven by two separate clocks.

Because of this, additional logic is needed to convert messages

from one clock domain to the other. Despite using slightly

different clocks, both transceivers are rated for operation at

100G and can sustain this data rate given that there are gaps

between bursts of traffic. FIFO buffering was added to allow

for these random short-term bursts.

The passthrough traffic is sent over an AXI Stream channel.

The wires constituting this channel also feed directly into the

Chopper, allowing it to observe any passing communication.

B. Chopper

The Filtering Sector is designed to allow a user to specify

any filter (i.e. BPF program). Since the number of instructions

(and thus, the length of the program’s runtime) is not known

a priori, we allow the user to distribute the task among

multiple parallel BPF Cores as shown in Fig. 5. For this,

we implemented a Chopper with one output queue per packet

filter. This also allows us to clock the BPF CPUs at a slower

frequency, which significantly eases the burden on the FPGA

compilation for complex structures [17].

This architecture allows us a significant margin for upward

scalability. The BPF Cores have a maximum operable bit rate;

even so, when moving to 400G speeds, the Chopper can be

easily reconfigured to divide the input bit rate among a larger

number of slower output queues.

The Chopper is implemented in HLS as follows. A single

AXI Stream input receives the packets. This input can be

clocked up to 475 MHz, and there is no limitation on the

data width of the input channel. An arbiter, based on probes

that detect forward congestion and buffer usage, and based on

its recent history of where it sent the previous few packets,

selects an output stream for each packet to maintain the

average bit rate of each output line under the specified amount.

The decision logic is separate from the crossbar allowing the

chopper to have a smaller critical path. The output decision

is based on four-cycle-old information. However, since we

have sufficient output buffering to fit at least one packet

plus four flits, this does not compromise reliability. Packets

are considered indivisible; an entire packet from the input

stream is sent to the same output stream, where the data is
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buffered in a FIFO memory. A second circuit reads from this

FIFO memory and outputs it as an AXI Stream signal of the

appropriate clock speed and channel width to support the BPF

Core’s maximum bit rate.

The arbitration portion of the Chopper sets the average bit

rate on each output line to 50 Gbps. The indivisibility of the

packets, however, require that the Chopper accomplish this

using intermittent bursts of 165 Gbps (512 bit wide signal

at 322MHz). It is for this reason that the data needs to be

buffered, as the BPF Cores cannot support any bursts beyond

51.2 Gbps. To prevent this FIFO buffer from overflowing, the

capacity is set to be large enough to buffer two maximum-

sized packets (3 kB, or 18 kB with jumbo packets enabled).

Even if a packet has not been fully read, the buffer can still

accept an entire new packet. Testing with a random assortment

of packets ranging from 64 B to 9 kB in size showed that no

packets were ever dropped when the average input bit rate was

kept at 100 Gbps.

The arbiter is able to function regardless of the composition

of the network traffic (i.e., distribution of small and large

packets). However, the parallel approach can lead to packets

being recorded out of order. To resolve this, a timestamp

(based on a global FPGA clock counter) is recorded with each

incoming packet and added to its header. Currently, software

can perform the task of re-ordering the packets, however, it is

more desirable to do the re-ordering in hardware. One option

is to remove timestamps altogether and instead modify the

Chopper and Forwarder to never output packets out of order;

this would have the lowest additional FPGA resource cost, and

would only suffer a small loss of maximum throughput. Alter-

natively, a general re-order buffer would preserve maximum

throughput at the cost of significantly larger on-chip memory

costs. These developments are left as future work.

C. Clocking

The Passthrough Sector uses one 512-bit AXI Stream chan-

nel clocked at 322 MHz in each direction. Each channel

supports a maximum bit rate of 164 Gbps (512 b at 322 MHz).

The Chopper snoops on this channel at full speed and outputs

several streams operating at a clock speed of 100 MHz with

a bus width of 512 bits for a bit rate of 51.2 Gbps, which

is an acceptable speed for the BPF Cores. Each BPF Core

is capable of outputting accepted packets at this same rate of

51.2 Gbps.

Currently, we have no available 400G hardware. However,

we performed a 400G Chopper test with an internally gen-

erated signal of random packets between 40 and 9000 bytes

in size, clocked at 450MHz. The bus width was 1024 bits

wide for a maximum bitrate of 460.8G. Even at this bitrate,

the Chopper was able to correctly divide the input into nine

output signals at 51.2 Gbps (512-bit bus at 100 MHz) with no

packet drops.

D. BPF Cores

Currently, Wireshark relies on the OS kernel to receive

packets from networking hardware and perform filtering based

on an arbitrary BPF program. As established in Section I, even

a powerful CPU machine cannot perform either one of these

tasks at 100G. FFShark moves the filtering operation from

the OS kernel to a passthrough device embedded within the

100G network, and performs filtering with an array of parallel

processors we call BPF Cores (Fig. 5).

Fig. 6. BPF Core.

Each BPF Core is equipped with its own Instruction Mem-

ory and Packet Memory, as shown in Fig. 6. Every packet from

the Chopper is copied into the Packet Memory of a BPF Core.

Each core’s Instruction Memory can, at runtime, be loaded

via an external configuration bus with a BPF program that

will be executed once for each packet it receives. Using RET

instructions, a program causes the BPF Core to emit an accept

or reject signal; on acceptance, the Forwarder (Section IV-G)

will send the packet to external storage.

The BPF CPU consists of a Datapath and a Controller.

The Datapath is shown in detail in Fig. 7. The Controller is

pipelined with three stages: fetch, execute, and writeback. The

last two stages control the Datapath via the Control Signal

wires, and support all BPF operations except MUL, DIV, and

MOD (which are seldom-used in real filtering applications).

There are four Control Signals that do not connect into the

Datapath: the inst_rd_en and pack_rd_en signals are

directly connected to their respective memories, and cpu_acc

and cpu_rej are used to signal the Ping-Pang-Pong intercon-

nect as described in Section IV-F. The Datapath is connected to

the Instruction Memory via its inst_rd_data wire, and is

connected to the Packet Memory via its pack_rd_addr and

pack_rd_data wires. All other wires in Fig. 7 are internal

and do not leave the module.

E. Selecting the Number of Parallel BPF Cores

The Chopper must split the input stream among a number

of parallel BPF Cores, which have a maximum operable bit

rate. However, if the BPF programs are very long and/or the

BPF Cores are swamped with an excess of small packets,

the effective bit rate of each core is decreased and more are

required to support the 100G bandwidth.

This subsection will present a general technique for esti-

mating the required number of parallel cores along with a

running example, shown in Listing 1. This listing shows the

BPF instructions resulting from the tcp src port 100

PCAP filter expression. For our running example, we will

assume that 20% of input packets use neither IPv4 nor IPv6,

30% of packets use IPV4 and UDP, 25% of packets use IPv4

and TCP but are not from source port 100, and 25% of packets

use IPv4 and TCP and are from source port 100. For our

example, the average packet length will be 680 B.
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Fig. 7. BPF CPU Datapath.

ldh [12] ; A = EtherType
jeq #0x86dd, ipv6, ipv4 ; Check if IPv6

ipv6: ldb [20] ; A = Protocol Number
jeq #0x06, srcv6, rej ; Check if TCP

srcv6: ldh [54] ; A = TCP source port
jeq #100 acc, rej ; Check if 100

ipv4: jeq #0x0800 tcp4, rej ; Check if IPv4
tcp4: ldb [23] ; A = Protocol Number

jeq #0x06 frag0, rej ; Check if TCP
frag0: ldh [20] ; A = Fragment #

jset #0x1fff rej, srcv4 ; Check Fragment # != 0
srcv4: ldxb 4*([14]&0xf) ; X = IP Header Length

ldh [x+14] ; A = TCP source port
jeq #100 acc, rej ; Check if 100

acc: ret #0xffff ; Accept
rej: ret #0 ; Reject

Listing 1. Compiled BPF machine code for the PCAP filter
tcp src port 100

In general, the input stream of packets can be broken up

into k different classes, where each class triggers an identical

execution path in the filter code. In our running example,

k = 4. Each packet in class i has a code path of length

Ii instructions and has an average packet length of li bits.

Finally, a randomly selected input packet has a probability Pi

of belonging to class i. The values of Ii, li, and Pi for the

running example are shown in Table II.

TABLE II
Ii , li , AND Pi VALUES FOR RUNNING EXAMPLE IN SECTION IV-E

Class (i) Ii li Pi

1 4 5440 20%

2 6 5440 30%

3 11 5440 25%

4 11 5440 25%

For these calculations we will assume the BPF CPU requires

four cycles per instruction2 i.e., CPI = 4. If the CPU is

operating with a clock period of T seconds, then the average

bit rate of the BPF CPU (RCPU) is

RCPU =

k∑

i=1

Pi ×
li

Ii · CPI · T
(1)

The denominator in Equation 1 represents the amount of time

(in seconds) needed by the CPU to process a single packet.

The quantity RCPU represents the bit rate of a BPF CPU.

However, to select the correct number of BPF Cores, we must

compute RCore, the bit rate of a BPF Core:

RCore = min (RCPU, 512 bits× 100 MHz) (2)

where 512 bits × 100 MHz represents the maximum bit rate

that can be used to fill the BPF Core’s Packet Memory (c.f.

Section IV-C).

Thus, the required number of parallel BPF Cores is

N = �100G/RCore�. In our example RCPU = 19.8G, there-

fore RCore = 19.8G and N = 6. In a real-world application,

an FFShark user would have to make educated guesses of k,

Ii, li, and Pi based on their knowledge of the system they are

debugging.

Generally speaking, we have found six parallel cores to

be sufficient for common filters such as selecting all packets

to/from a specific address or port range. More complex filters

may require more BPF Cores, and the described procedure

for estimating the number needed should be done. However,

even as a filter becomes more complex, filter code is able

2This is an upper bound. For common Wireshark filters, the average CPI
is closer to 2.5
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to terminate early on rejected packets and the proportion

of accepted packets usually decreases. Consider the example

shown in Table III: this example models a filter with more

conditions applied to the same traffic pattern as our previous

example. Specifically, the filter checks for any HTTP packet

containing data. Classes 1 and 2 are still rejected early, and

class 4 requires two additional instructions before getting

rejected. Class 3, however, splits into two classes: 3a are

packets that pass some of the conditions of the new filter but

are ultimately rejected, 3b are packets that pass all conditions.

Even if the number of instructions for accepted packets is

much larger, in this example the number of required parallel

cores is still six.

TABLE III
Ii , li , AND Pi VALUES FOR THE FILTER TCP PORT 80 AND

(((IP[2:2]-((IP[0]&0XF)<<2))- ((TCP[12]&0XF0)>>2))

!= 0)

Class i Ii li Pi

1 1 4 5440 20%

2 2 6 5440 30%

3a 3 13 5440 20%

3b 4 28 5440 5%

4 5 13 5440 25%

F. Ping-Pang-Pong Controller

The BPF Core is a BPF CPU equipped with an Instruction

Memory and a Packet Memory (Fig. 6). Immediately we notice

that the Packet Memory is shared among three agents: the

Chopper, the BPF CPU, and the Forwarder. An important

performance optimization is a “ping-pang-pong” buffer, shown

in Fig. 8. This scheme enables all three agents to access

memory at full speed simultaneously.

Fig. 8. Ping-pang-pong buffer.

The custom interconnect maintains three FIFOs that repre-

sent a job queue for each agent. At any given moment, the

token at the head of an agent’s queue is used by a multiplexer

to connect the agent with one of the Ping, Pang, or Pong

buffers.

Fig. 9 demonstrates the technique in action. The top-left

block represents the initial state of the job queues and is

understood to mean “all three buffers are waiting for the

Chopper to read a packet, and the Chopper is currently

connected to the Ping buffer”. When the Chopper has finished

reading a packet into the Ping buffer, the Ping token is popped

from the Chopper’s queue and added to the CPU’s queue (top-

right block). At this point, the Chopper is now connected to

the Pang buffer and the CPU begins processing the packet

in the Ping buffer. The bottom-left block shows what would

happen if the Chopper finished reading a packet before the

CPU finished executing its program: the Pang token is popped

from the Chopper’s queue and added to the CPU’s queue. The

bottom-right figure shows the result of the CPU accepting the

packet: the Ping token is popped from the CPU’s queue and

added to the Forwarder’s queue.

Fig. 9. Job queues in the Ping-Pang-Pong interconnect.

G. Forwarder

Upon acceptance of a packet, the BPF Core places one of

the Ping, Pang, or Pong buffers on the Forwarder’s job queue.

The Forwarder then reads from the buffer and outputs packet

data on a 512-bit wide AXI Stream output at 100 MHz.

If the target FPGA device is equipped with three (or more)

QSFP28 ports, the accepted packet streams can be recombined

and sent out at the full 100G rate. The FPGA used in this work

has only two QSFP28 ports, but has a high-bandwidth channel

to a connected ARM CPU.

Borrowing from the work of Vega et al. [18], we extended

their protocol to transfer bidirectional messages between the

FPGA and the on-board ARM processor. Using this scheme,

we were able to concatenate the accepted packets from the

BPF Cores and forward these to the ARM core. A header

was also added to allow some metadata to be transferred

with the packet. Once in the ARM core, the message can

be handled as desired. For functionality purposes, initial tests

printed the filtered messages onto the terminal of the ARM

processor. For a more practical implementation, a separately

developed storage system [19] allowed us to reliably, and with

low overhead store the collected messages to a remote storage

server. This system can be used by both FPGAs and CPUs.

However, since we lack a third network port, packets are

forwarded to the ARM to use the ARM’s network port.

To utilize this channel for the stream of accepted packets,

we built a custom data width converter for the Forwarder

that keeps the clock at 100 MHz but reduces the bus width

to 64 bits for a bitrate of 6.4 Gbps. This is slow enough

for the ARM processor to receive the accepted packets. If

the bandwidth of accepted packets exceeds the speed of this

6.4 Gbps bottleneck, the Filtering Sector will drop packets,

but the Passthrough Sector is not affected.

V. RESULTS AND DISCUSSION

For these results, the FFShark system was implemented

on a Zynq Ultrascale+ XCZU19EG-FFVC1760-2-I [15]. This
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chip includes both an FPGA and an ARM CPU on the same

silicon die. The two can communicate via several high-speed

AXI channels. The FPGA has 1.1 million logic elements and

9.8 MB of on-chip memory. The processor is a 64-bit ARM

Cortex-A53. This chip is part of a Fidus Sidewinder 100 [15]

FPGA board, which connects the MPSoC to two QSFP28

4x25G ports, a 1G Ethernet port, and a host of other periph-

erals.

To characterize the performance of FFShark, three types of

measurements are gathered: the added latency on passthrough

traffic, the packet drop rate and performance of the Filter

and Passthrough Sectors, and the number of FPGA resources

needed by the design.

A. Insertion Latency

The goal of this test is to measure lP , the insertion latency

of the passthrough sector of FFShark, defined by the time

taken for a packet to enter on one QSFP port and leave on

the other. Fig. 10 outlines the test setup. Each gray box in the

figure represents a Sidewinder board, and each connection is

a 2 m 100G cable. UDP was chosen as a lightweight routable

protocol with consistent latency that can be subtracted from

the total latency.

Fig. 10. Test setup for latency measurements

The round-trip time of a direct connection was measured,

as shown in Fig. 10a. This quantity is denoted by LD, and

represents the time taken for a packet to:

1) Undergo processing by a 100G UDP core [16]

2) Pass through 2 m of cable (lC)

3) Enter and exit the Loopback

4) Pass through 2 m of cable

5) Upon return to the Traffic Generator, undergo processing

by a 100G UDP core.

The Traffic Generator board saves a timestamp when a packet

is sent to the UDP core (Step 1) and when the packet exits

the UDP core after returning (Step 5).

Next, the round-trip time including FFShark was measured

as shown in Fig. 10b. This quantity is denoted by LP .

TABLE IV
ROUND-TRIP TIMES FOR DIRECT CONNECTION AND PASSTHROUGH TEST

Size (B) 100 164 292 420 548 804 1060 1572

LD (μs) 3.72 3.04 .893 .914 .952 1.01 1.08 1.21

LP (μs) 5.78 3.66 1.64 1.66 1.72 1.82 1.93 2.14

Table IV presents the measured values of LD and LP for

various packet sizes (including the 36 byte UDP header),

Fig. 11. Insertion latency of FFShark (LP ) vs. a Dell Z9100-ON 100G switch
(LS ).

averaged over 4000 packets in a continuous 100G transmis-

sion. Given the propagation speed through a copper cable,

the propagation delay lC of a 2 m cable was found to

be 0.009 μs [20]. Fig. 11 shows the calculated value of

lP = (LP −LD−2 · lC)/2. A similar test was performed with

a Dell Z9100-ON 100G switch in lieu of FFShark, as shown

in Fig. 10c. The measured insertion latency of this switch lS
is also presented in Fig. 11 to present a comparison between

FFShark and commodity 100G hardware. Note that the switch

does not support packets larger than the MTU limit of 1.5KB.

A higher latency was recorded for packets smaller than 100

bytes. This was due to our test exceeding the maximum packet

rate for small packets as explained in SectionV-D. When

the bit rate was lowered, the insertion latency for packets

100 bytes in size or smaller was approximately equal to the

latency of the test for packets 164 bytes in size (approximately

0.3 μs). Additionally, the latency of FFShark increases as the

packet size increases. At this time, we are using Xilinx CMAC

controllers, which force us to store-and-forward entire packets

instead of using a cut-through approach3.

B. Maximum Performance

To test maximum performance, 32768 packets ranging in

size from 16 B to 1500 B were sent through FFShark at the

full 100G bitrate to a loopback device and were re-collected at

the origin. The device at the origin verified the integrity of the

packets and counted the number of packets lost or corrupted.

99.41% of packets were returned correctly in this highly

congested application. No packets were returned corrupted.

When the test was modified to test packets ranging in size

from 176B to 1500B, no packets were dropped. Section V-D

explores the source of these packet drops. Handshaking, or

flow control can be added to mitigate these packet drops.

The Passthrough Sector and Filtering Sector were shown

to never miss a packet4. This was demonstrated by running a

test multiple times where a single packet with a unique header

was hidden in different locations within a 100G burst of traffic.

The packet filter was programmed to detect the signature. In

3The Xilinx CMAC does not tolerate “bubbles” in its input data stream
4Packet drops may occur if the rate of accepted packets exceeds the bitrate

allowed by the Forwarder for an extended period of time
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TABLE V
RESOURCE USAGE OF FFSHARK AND SELECTED SUBCOMPONENTS

Component LUTs FFs BRAMs

Single BPF Core 3,600 1,161 23.5

Chopper 4,112 8,122 0

Entire FFShark Design 56,250 72,509 251

Available in Zynq 522,720 1,045,440 986
Ultrascale+ MPSoC

all cases FFShark was able to correctly identify and forward

the packet to the ARM, while ignoring all other packets.

C. Resource Usage

Table V shows the resource usage of this project. The first

two rows show the resource usage of a single BPF Core and

a Chopper. The third row shows the entire cost of the final

FFShark design; this tally includes six BPF cores, a Chopper,

and the extra logic required for the Passthrough Sector and for

interfacing the Instruction Memories and Forwarder with the

on-board ARM CPU. No DSPs were used in this design. Since

this design only uses a fraction of the FPGA’s total capacity,

the remaining resources can be used to add more filtering

cores, or to embed FFShark into a larger design. Alternatively,

FFShark could be placed on a smaller, less expensive FPGA.

D. Discussion

High latency and occasional packet drops were seen in tests

involving packets smaller than 176B at the 100G bit rate.

It was discovered that the 100G CMAC and transceiver on

the FPGA has per-packet overhead [21] creating a maximum

packet rate constraint in addition to the maximum bit rate

constraint. In tests with small packets, the number of packets

per second exceeded this maximum and the network hard-

ware began applying backpressure. The GULF Stream UDP

core has internal buffers that temporarily mitigate this issue.

However, as these buffers fill up, the backlog of packets means

that latency increases linearly leading to high latency at small

packet sizes as seen in Section V-A. Eventually, the GULF

Stream FIFOs become completely full resulting in the few

congestion-based packet drops seen in Section V-B. When the

bit rate was decreased for the smaller packet sizes, the packet

drops ceased and the latency followed the same trend for all

packet sizes.

Apart from this hardware-based restriction, FFShark per-

forms as expected adding a smaller latency than a high-end

100G switch and without affecting packet data. The filters

are able to inspect 100% of incoming packets when the

Forwarder’s bandwidth is not exceeded.

The total design occupies less than a quarter of the resources

in the FPGA and the Chopper is able to correctly split the

input stream at 400G speeds. This makes FFShark immediately

scalable to 400G when MAC/transceiver support becomes

available.

VI. FUTURE WORK

This work has many future prospects as it is scalable to a

wide range of speeds and is very versatile. While in this case

it is used to interactively analyze network traffic, it can be

used to debug any type of data communication by modifying

the Passthrough Sector. For instance, PCIe signals can also be

converted to AXI Stream and be observed in a similar manner.

FFShark can also be used to monitor and debug general signals

in an FPGA design.

It is a research question to find if and how the BPF language

could be modified to better serve as an interactive debugging

tool. For example, eBPF [22] is used in the Linux kernel to

track filesystem calls, create histograms of I/O transfers, and

other advanced debugging tasks. Not all the features supported

by eBPF map well to an FPGA implementation, but the shared

memory model would be essential to allow the collection of

global statistics at 100G speeds.

The BPF Core is a processor that can accept arbitrary

programs5. While generic statistics are simple to collect, we

wish to create a method for the user to program new types of

measurements and have this system report live values. These

custom statistics can then be used by SDN applications to

improve routing and other decisions.

This work is currently compatible with Wireshark in the

sense that it uses the same BPF machine code and returns the

same results. However, some work is needed to integrate this

with the Wireshark code base so that the familiar Wireshark

GUI and utilities may be used. This could be done by creating

a custom OS network driver that transfers filter programs to

FFShark instead of executing them in the kernel.

VII. CONCLUSION

We have created a passthrough device, operating at 100G,

which can be programmed to flag and store a subset of

observed packets. This subset is specified using the PCAP

filtering language, allowing users to continue using familiar

syntax. The device was also shown to operate at full 100G

speeds without dropping packets and was shown to be immedi-

ately expandable to 400G once transceiver and FPGA network

support is available. The device adds 400ns of latency to the

network data, comparable to a commercial 100G switch. Since

networked designs expect latencies in this range and FFShark

does not significantly change the environment, this justifies its

use for debugging in a live environment.
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