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Weather Modelling

Atmospheric modelling requires simulation of a chaotic system.

Chaotic systems are highly sensitive to initial conditions - the
butterfly effect.

There are many sources of uncertainly in atmospheric simulations.

Sets of multiple simulations, called emsembles are run to build a
distribution of outcomes.

Lorenz’96 is a simple model designed by Lorenz to study predictability
in chaotic systems.

We study the two-scale Lorenz’96 system which models small and
large-scale dynamics.
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The Lorenz’96 system (K=6, J=8)
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Typically, the largest J of interest
≈ 128. We increase the value of K
when increasing system size (up to
≈ 800,000).
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Contributions

A hardware design of the two-scale Lorenz’96 system, useful for
studying the effects of multi-scale interactions in weather modelling.

Demonstration of how trade-offs can be made between precision and
throughput for the hardware implementation of a system with chaotic
behaviour.

Present an analysis of the precision reduction impact on a hardware
implementation of Lorenz’96 using metrics appropriate for chaotic
systems.

Show the effects on power and performance, and compare to an
optimised CPU implementation.
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Hardware Design

Pipelined Runge-Kutta
timestepping.

Different precisions for global
and local-scale quantities.

Local-scale values processed
with customisable vector width.

Periodic boundary conditions
are problematic for a streaming
design.

Periodic properties of the
system are used to enable
in-place updates, “rotating”
the system each update.
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How much precision is enough?

Computational scientists typically only have to choose between single
and double precision.

Choosing double precision is the simplest way to avoid thinking about
the way individual degrees of freedom have been discretised.

We can usually compare a reduction precision implementation against
an analytical solution for simple test cases and a high-precision
implementation for more complex ones.

Neither of these approaches is directly applicable to chaotic systems due to
the Butterfly effect.
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Error metrics

We cannot compare long runs of Lorenz’96 at different precisions
using standard error metrics.

Even when starting from the same initial conditions, we expect the
chaotic nature to magnify effects of different number representations,
order of operations and other implementation artefacts.

We use the Hellinger distance to compare the probability density
functions of the global and local-scale values of the simulation.

For two probability density functions p and q, the Hellinger distance is
defined as:

H(p, q) =

√
1

2

∫ (√
p(x) −

√
q(x)

)2
dx
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Estimating the error

Using an arbitrary precision CPU-implementation we vary the precision of
local and global-scale associated values. Distances are compared against
those of a double-precision implementation.
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Local-scale (Y) distances
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Precision changes in variables at one scale do not typically affect those at
the other, so we could optimise them independently.
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Estimating appropriate mantissa sizes

Using the CPU-based reduced-precision analysis, we can calculate
minimum mantissa widths for local and global-scale values, depending on
the amount of error we are willing to accept.

Run H
(global)

H
(local)

Est.
min.
mantissa
(global)

Est.
min.
mantissa
(local)

Changed initial conditions 2.788e-3 1.939e-4 15 12
c × 0.99, F × 0.99 4.605e-3 1.505e-3 13 10
c × 1.01, F × 1.01 5.042e-3 1.719e-3 13 10

c × 0.9, F × 0.9 4.047e-2 1.625e-2 11 9
c × 1.1, F × 1.1 3.620e-2 1.415e-2 11 9

Scaling c and F represents variation in the input parameters by 1 and 10%
due to measurement uncertainty.
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Profiling exponent ranges

We also use the CPU-based implementation to profile exponent ranges for
the global and local-scale values.
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Most exponents are ≤ 9 so we need at least 5 bits for both global and
local-scale (signed) exponent values.
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The resulting designs

We build designs1at different precisions, allowing us to process different
number of input elements per cycle (the vector width).

DFE1 Uses single precision.

DFE2 Estimated precision for minimal effect on result.

DFE32/4 Estimated as similar error to 1% variation in input
parameters.

Build
Global-scale
type

Local-scale
type

Vector
width

Utilisation (%)
Logic DSP BRAM

DFE1 float(8, 24) float(8, 24) 8 55.00 48.16 24.25
DFE2 float(6, 15) float(5, 12) 16 69.85 32.84 28.67
DFE3 float(5, 13) float(5, 10) 16 64.28 32.84 27.63
DFE4 float(5, 13) float(5, 10) 24 79.15 47.92 33.74

1Maxeler MAX3A Vectis Dataflow Engine (Xilinx Virtex6 SXT475).
2Used to facilitate accuracy comparisons with the CPU-based implementation.
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Precision Results

For J = 64 (which the CPU-simulations were run with) we have similar
errors to those predicted by the CPU-simulations. For J = 144, we have
slightly larger errors, but still acceptable for use.

Build
J = 64 J = 144

H
(global)

H
(local)

H
(global)

H
(local)

Changed initial cond. 2.788e-3 1.939e-4 7.029e-3 6.291e-4
c × 0.99, F × 0.99 4.605e-3 1.505e-3 1.399e-2 1.726e-3
c × 1.01, F × 1.01 5.042e-3 1.719e-3 1.067e-2 1.861e-3

c × 0.9, F × 0.9 4.047e-2 1.625e-2 1.167e-1 1.487e-2
c × 1.1, F × 1.1 3.620e-2 1.415e-2 8.826e-2 1.236e-2

DFE1 (g=f(8,24), l=f(8,24), w=8) 2.934e-3 2.881e-4 7.472e-3 1.180e-3
DFE2 (g=f(6,15), l=f(5,12), w=16) 2.776e-3 2.707e-4 4.320e-2 2.443e-3
DFE3 (g=f(5,13), l=f(5,10), w=16) 3.267e-3 6.742e-4 7.289e-2 1.012e-2
DFE4 (g=f(5,13), l=f(5,10), w=24) N/A N/A 7.404e-2 1.005e-2
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Performance (J=144, float system size: 227KiB - 453MiB)
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1Maxeler MAX3A Vectis DFE (Xilinx Virtex6 SXT475 @ 150MHz).
2Dual-socket hyperthreaded Intel Xeon X5660s @ 2.67GHz.
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Power Efficiency

We measure the power requirements of a software implementation on two
different systems and compare against the most power efficient.

Build Throughput
(elements/s)

Power (W) Efficiency
(elements/J)

Relative
Efficiency

System 12 (4-cores) 1.63e8 2081 7.83e5 0.972
System 23 (6-cores) 2.05e8 3991 5.14e5 0.638
System 2 (12-cores) 4.05e8 5031 8.05e5 1.00

DFE1 (System 1) 1.14e9 137 8.35e6 10.4
DFE2 (System 1) 2.17e9 143 1.52e7 18.9
DFE4 (System 1) 2.81e9 146 1.92e7 23.9

1Power consumption of unused Maxeler cards subtracted.
2Hyperthreaded Intel Core i7 870 @ 2.93GHz
3Dual-socket hyperthreaded Intel Xeon X5660s @ 2.67GHz.
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Future work

More complex models like shallow water.

More sophisticated means for incorporating input-value uncertainty
into a simulation.

Generate designs from a domain-specific languages, allowing domain
specialists to supply uncertainty information directly.
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Conclusions

Obtaining near-identical numerical behaviour to a reference solution is
not always the best goal.

Chaotic systems force us to re-evaluate how we measure the
correctness of a simulation.

Chaos-aware precision reduction enables us to exploit input-parameter
uncertainty and nature of the chaotic behaviour itself.

We demonstrated how to achieve this for simple chaotic system and
the performance and power benefits over a conventional CPU
implementation.

Weather modelling is a problem that drives the purchase of
supercomputers. Only reconfigurable computing enables us to exploit
the properties of chaotic systems to reduce power and improve
performance.
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