

IoT: The Convergence of Information Technologies and Operations Technologies

Flavio Bonomi (presented by Gordon Brebner, Xilinx)

Founder and CEO, Nebbiolo Technologies, INC.

Vancouver Workshop FPGAs in IoT, May 3rd, 2015 flavio@nebbiolotech.com

Agenda

- High Level Thoughts on IoT
- IoT : The Convergence of IT and OT
- Key IoT Technologies :
 - Communications
 - Distributed Computing and "Fog Computing"
 - Security and Privacy
 - Software!!!!
- Conclusions, in the Context of "Data on a Mission"

The IoT Hype Curve

IoT is at the Top of the Hype Curve

The Internet of Things Key Challenge: Meeting of Different Cultures, Generations, Worlds, and Models of Investment, Development and Commercialization

Different Requirements and Technologies !

The IoT Infrastructure

111010110

+

10110101

The Convergence of IT (Information Technologies) and OT (Operations Technologies)

101100101

01100101

010110110 01100101 0101101 010110111 11101

The IT Infrastructure Evolving Towards IoT

IT and OT Convergence: Industrial

IT and OT Convergence: Robot meets Human

IT and OT Convergence: Transportation

IT and OT Convergence: Automobile Evolution

IT and OT Convergence: Key Technologies

Evolving Communications and IoT

Evolving IoT Communications Technologies

(Towards More Determinism)

IT and OT Convergence: Key Technologies

2. Distributed Computing: and the Role of "Fog Computing"

The IoT Infrastructure and Fog Computing **Public Clouds Private Clouds** Where is Computing and Storage Today? 1. Clouds Public and Priva Enterprise **Communications** 2. Enterprise Infrastructure **Datacenters** We need more Computing sternet, Enterprise Ethernet, WiFi **Traditional and** 3. and Storage at the Edge: Embedded **Fog Computing!** Endpoints We need more Collaborative Traditional ICT end-points Computing among endpoints: Swarm Computing!

Machines, devices, sensors, actuators, thing

IoT: Networking, Computing and Storage Hierarchy

Fog Computing Key Motivations:

- 1. Real-time, local control
- 2. Communications "bridging"
- 3. Virtualization of all resources
- 4. Edge Data Management
- 5. Security and Privacy
- 6. Scalability
- 7. Edge application hosting
 - Reliability

"The IoT Distributed Computer"

(Information Technologies)

(Operations Technologies)

The meeting place of Internet, Cloud, (IT), and embedded world, (OT)

Fog Computing Gaining Traction:

1. Industry and press acceptance

2. Academic acceptance

IT and OT Convergence: Key Technologies

3. Security and Privacy

IoT Security Example: Vehicles are Vulnerable to Security Attacks from Many Surfaces

This is Scary! What to Do ?

From T.S.Eliot, Four Quartets:

We need to "Fare Forward" rather than waiting to "Fare Well"....

- It will be an arms race. Start with what we have... Learn and borrow from Defense Industry
- Invest in Research and Innovation in Security
 - Progress on: Un-clonable devices, low power encryption, low power re-programmable devices, physical layer security
- Exploit the potential of Cloud and Fog Computing to support Security
- Prioritize threats, and trade carefully Security vs Efficiency and Utility
- Revisit SOFTWARE!!!!!!

IoT and Security: Key Role of the Edge

IT and OT Convergence: Key Technologies

4. Software!!!!!

The Biggest Challenge!!!

IoT: Software is Critical and yet Challenged!

IoT Software Challenges :

- Scale, Distribution, Real-time, Security and Safety
- Modularity, Automation, and Reusability
- Vertical Experts not Programmers !
- Languages Do Not Capture Behavior
- Software for a Complex, Interacting Ecosystem with Data at the Core

ተ

We May Need a <u>Clean Slate Approach to Software Development!</u>!

Clean Slate IoT Software: Cubicon

Purpose-Built Software Components for IoT Systems

ì

Clean Slate IoT Software: Cubicon

A Graphical, Multi-Perspective Approach to Computer Programming

Bits

Component Packaging

Clean Slate IoT Software: Cubicon

64 Universal Computations Abstractions

Software component chart depicts

64 component types that recombine to form all Cubicon apps.

7

Conclusions

Data is Not All !!!!

FPGA + IoT Are Good Together !!!!

Data is Key!!!

Data Needs Help to Accomplish its Mission!!!

- Data needs to be extracted efficiently, in motion, cheaply, securely
- Data needs to be "objectified and contextualized", as soon as possible, needs to be virtualized, securely stored, compressed, and analyzed hierarchically.
- Data needs to be moved, located, searched efficiently, cheaply, securely, around the infrastructure
- Rich Data awareness needs to be distributed from end-points to Clouds

Data is Not the End of The Story!

- Data needs to be used to Close the Control Loop!
- Good Analysis leads to Good Actions!
- The Convergence of IT and OT needs to deliver more efficient, scalable, effective Control of Systems

FPGAs Have a Great Role to Play in IoT!

- FPGA Technology can play a role in:
 - Supporting evolving standards in transport (e.g., Deterministic Ethernet (TSN)
 - Providing acceleration in data management and analytics (e.g., video analytics)
 - Acceleration in SDN applications at the Edge
 - Evolving security protocols
 - Storage evolving protocols
- FPGAs need to be made easier to program and more dynamic in their configuration
- FPGA main issue is COST!!!!!